RADIO TEST REPORT ETSI EN 300 328 V2.2.2 (2019-07)

Product : smartphone Trade Mark : Blackview Model Name : N6000 Family Model : N/A Report No. : S23051103003002

Prepared for

DOKE COMMUNICATION (HK) LIMITED

RM 1902 EASEY COMM BLDG 253-261 HENNESSY ROAD WANCHAI HK CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
 Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's Name DOKE CO	MMUNICATION (HK) LIMITED
Address RM 1902 E	EASEY COMM BLDG 253-261 HENNESSY ROAD
WANCHAI	HK CHINA
Manufacturer's Name: Shenzhen	
Address Buildi Guangmine	ng3, 7th Industrial Zone, Yulv Community, Yutang Road, g District, Shenzhen, China.
Product description	
Product name: smartphon	
Trademark: Blackview	
Model Name: N6000	
Family Model: N/A	
Standards ETSI EN 3	00 328 V2.2.2 (2019-07)
	ted by Shenzhen NTEK, and the test results show that the ce with the 2014/53/EU RED Directive Art.3.2 ne tested sample identified in the report.
This report shall not be reproduced except	t in full, without the written approval of Shenzhen NTEK,
this document may be altered or revised by	y Shenzhen NTEK, personnel only, and shall be noted in
the revision of the document.	
Test Sample Number	S230511030005
Date of Test	
Date (s) of performance of tests	May 11, 2023 ~ Jun 05, 2023
Date of Issue	Jun 05, 2023
Test Result:	Pass -
A.C.	
1	2° 7
Testing Engineer :	Mukzi Lee
	(Mukzi Lee)
S. I.	
Authorized Signatory :	Adeso of St
	(Alex Li)
	At the second se
	A St
F 4 7 1	
	A St

Table of Contents	Page
1 . GENERAL INFORMATION	6
1.1 GENERAL DESCRIPTION OF EUT	6
1.2 INFORMATION ABOUT THE EUT	ب 7
1.3 TEST CONDITIONS AND CHANNEL	12
1.4 DESCRIPTION OF TEST CONDITIONS	13
1.5 DESCRIPTION OF SUPPORT UNITS	14
1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
2 . SUMMARY OF TEST RESULTS	16
2.1 TEST FACILITY	17
2.2 MEASUREMENT UNCERTAINTY	17
3 . TEST PROCEDURES AND RESUTLS	18
3.1 EQUIVALENT ISOTROPIC RADIATED POWER	18
3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER	18
3.1.2 TEST PROCEDURE 3.1.3 TEST SETUP	18 18
3.1.4 TEST RESULTS	19
3.2 . PEAK POWER DENSITY	20
3.2.1 LIMITS OF POWER SPECTRAL DENSITY	20
3.2.2 TEST PROCEDURE	20
3.2.3 TEST SETUP 3.2.4 TEST RESULTS	20 21
3.3. OCCUPIED CHANNEL BANDWIDTH	22
3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH	22
3.3.2 TEST PROCEDURE	22
3.3.3 DEVIATION FROM TEST STANDARD	22
	22
3.3.5 TEST RESULTS	23
3.4 . TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOM 3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF- BAND DOM	
DOMAIN	24
3.4.2 TEST PROCEDURE	24
3.4.3 DEVIATION FROM TEST STANDARD	25
3.4.4 TEST SETUP	25
3.4.5 TEST RESULTS	26 27
3.5 . ADAPTIVE (CHANNEL ACCESS MECHANISM) 3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR W	27 VIDE BAND
MODULATION TECHNIQUES	27
3.5.2 TEST PROCEDURE	28
3.5.3 TEST SETUP CONFIGURATION	28

4 4	Table of Contents	Page
		29
3.5.5 TEST R		
	TER UNWANTED EMISSIONS IN THE OF TRANSMITTER UNWANTED EMIS	
DOMAIN		31
3.6.2 TEST P		31
	ION FROM TEST STANDARD	
3.6.4 TEST S		32 33
	ESULTS(Radiated measurement) ESULTS (Conducted measurement)	35
	SPURIOUS RADIATION	35
	OF RECEIVER SPURIOUS RADIATION	
3.7.2 TEST P		35
	ION FROM TEST STANDARD	35
3.7.4 TEST S		36
	ESULTS(Radiated measurement)	
	ESULTS (Conducted measurement)	38
3.8. RECEIVER	RMANCE CRITERIA	39 39
	OF RECEIVER BLOCKING	39
3.8.3 TEST P		✓ ✓ 41
3.8.4 DEVIAT	ION FROM TEST STANDARD	41
3.8.5 TEST S		41
3.8.6 TEST R	ESULTS	42
4. TEST RESULTS	s ኛ	43
1M		43
4.1 RF Output		43
4.2 Power Sp	Channel Bandwidth	46
	er unwanted emissions in the out-of-ban	
	er unwanted emissions in the spurious d	
4.6 Receiver	spurious emissions	58
2M		61
4.1 RF Output		61
4.2 Power Sp	-	64
	Channel Bandwidth er unwanted emissions in the out-of-ban	d domain 67 70
	er unwanted emissions in the spurious d	
	spurious emissions	76
5 . EUT TEST PHO	ото 🔽 🦽 🗸	79
SPURIOUS EMISS	SIONS MEASUREMENT PHOTOS	79
4		

Report No.	Version	Description	Issued Date
S23051103003002	Rev.01	Initial issue of report	Jun 05, 2023
4			at .
AT .			4
4		1 - 2 - 2	
		×	A 4
All of		at st	5
		4	t i
A A	2	at the second se	Stor In
Live F			
		4	X
A A	~		
JIP T			×
		4	A.V.
AL AN	~		
			1
×	A.C.	- AT	4

1. GENERAL INFORMATION

1.1 GENERAL DESCRIPTION OF EUT

Equipment	smartphone		
Trade Mark	Blackview		
Model Name.	N6000	* & *	
Family Model	N/A 🔔 💉	2	
Model Difference	N/A		
	The EUT is smartphone		
	Operation Frequency: 2	2402~2480 MHz	
	Modulation Type:	GFSK	
	Adaptive/non-adaptive	Adaptive equipment	
Product Description	Receiver categories	3	
	Number Of Channel	Please see Note 2.	
	Antenna Designation: PIFA Antenna		
	Antenna Gain(Peak)	1.26 dBi	
Channel List	Refer to below		
Adapter	Model: QZ-01800EA00 Input: 100-240V~50/60Hz 0.5A Output: 5.0V3.0A or 7.0V2.0A or 9.0V2.0A or 12.0V1.5A (18.0W)		
Battery	DC 3.87V, 3880mAh, 15.01Wh		
Rating	DC 3.87V from battery o	r DC 5V from adapter	
I/O Ports	Refer to users manual	4	
Hardware Version	TE305_MAIN_PCB_V1.1		
Software Version	N6000_EEA_TE305_V1.0_01		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency (MHz)
00	2402
	2404
······	
2	<u> </u>
38	2478
39	2480

1.2 INFORMATION ABOUT THE EUT

a) The type of modulation used by the equipment:

FHSS

other forms of modulation

b) In case of FHSS modulation:

• In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:

• In case of Adaptive Frequency Hopping Equipment:

The maximum number of Hopping Frequencies:

The minimum number of Hopping Frequencies:

• The (average) Dwell Time:

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode

adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment: ./. ms

The equipment has implemented an LBT based DAA mechanism

- In case of equipment using modulation different from FHSS:
- The equipment is Frame Based equipment
- The equipment is Load Based equipment

The equipment can switch dynamically between Frame Based and Load Based equipment

- The CCA time implemented by the equipment: / µs
-] The equipment has implemented a non-LBT based DAA mechanism
- The equipment can operate in more than one adaptive mode

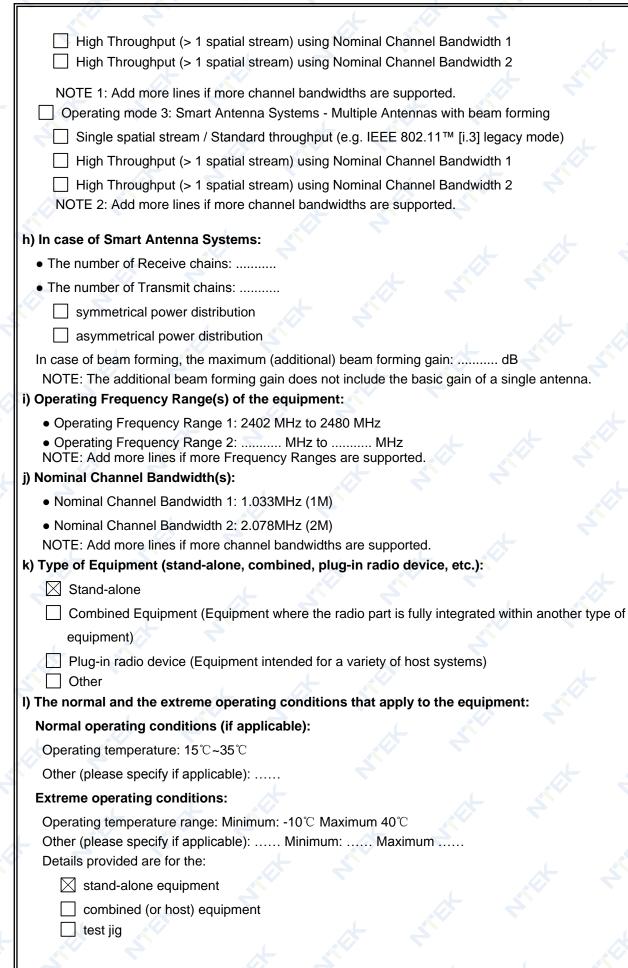
NTEK 北测

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.):

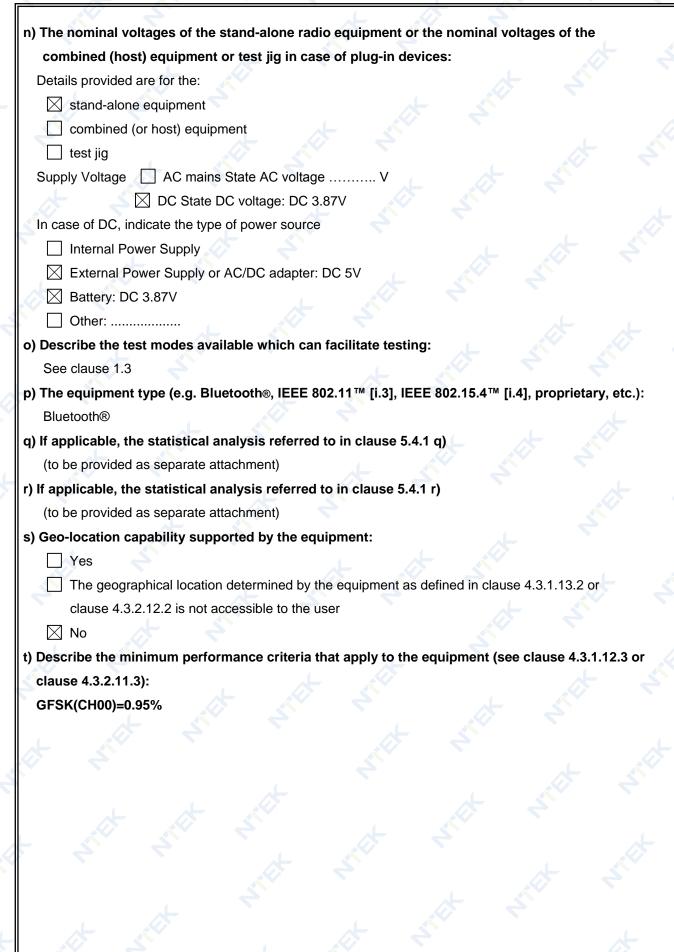
The maximum (corresponding) Duty Cycle:

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):


f) The worst case operational mode for each of the following tests:

- RF Output Power
 GFSK
- Power Spectral Density
- GFSK
- Duty cycle, Tx-Sequence, Tx-gap N/A
- Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)
- N/A
- Hopping Frequency Separation (only for FHSS equipment)
 N/A
- Medium Utilization
- N/A
- Adaptivity

N/A


- Receiver Blocking
- GFSK
- Nominal Channel Bandwidth
 GFSK
- Transmitter unwanted emissions in the OOB domain
- GFSK
- Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions
 GFSK
- g) The different transmit operating modes (tick all that apply):
 - Operating mode 1: Single Antenna Equipment
 - Equipment with only one antenna
 - Equipment with two diversity antennas but only one antenna active at any moment in time
 - Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one antenna is used (e.g. IEEE 802.11[™] [i.3] legacy mode in smart antenna systems)
 - Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)

NTEK 北测

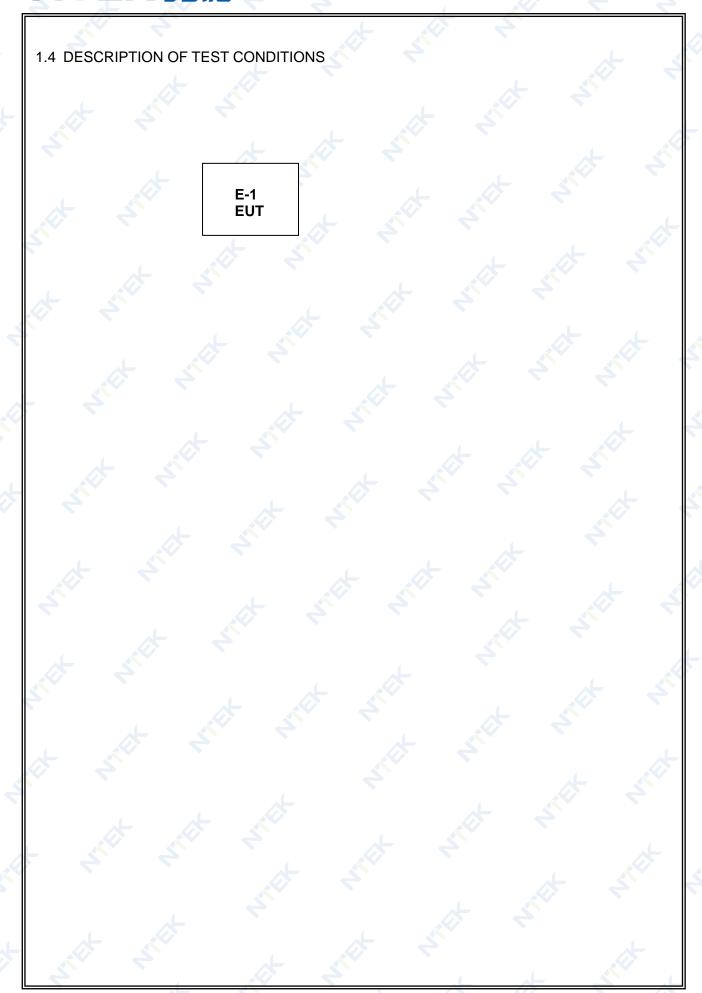
The intended com	bination(s) of the radio e	quipment power settin	gs and one or more antenna
assemblies and th	eir corresponding e.i.r.p.	levels:	
Antenna Type: PIF	A Antenna		
Integral Antenn	na (information to be provid	led in case of conducted	d measurements)
Antenna Gain:	: 1.26 dBi		
If applicable, add	ditional beamforming gain ((excluding basic antenna	a gain): dB
Temporary	y RF connector provided		
No tempor	rary RF connector provided	t 🔨 t	
Dedicated Ante	ennas (equipment with ante	enna connector)	
Single pov	wer level with correspondin	ig antenna(s)	
Multiple po	ower settings and correspo	onding antenna(s)	
Number of di	ifferent Power Levels:	<u> </u>	
Power Level	1: dBm		
Power Level	2: dBm		
Power Level	3: dBm		
NOTE 1: Add	d more lines in case the eq	uipment has more powe	er levels.
	ese power levels are condu	ucted power levels (at ar	ntenna connector).
NOTE 2: The			
For each of the Pow G) and the resulting Power Level	wer Levels, provide the inte e.i.r.p. levels also taking ir I 1: dBm	nto account the beamfor	ies, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting Power Level	wer Levels, provide the inte e.i.r.p. levels also taking ir	nto account the beamfor	ies, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting Power Level Number of ar	wer Levels, provide the inte e.i.r.p. levels also taking ir I 1: dBm ntenna assemblies provide	nto account the beamfor ed for this power level:	ies, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M	wer Levels, provide the inte e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9	ies, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting Power Level Number of ar Assembly #	wer Levels, provide the inte e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi)	nto account the beamfor ed for this power level: e.i.r.p. (dBm)	ies, their corresponding gains ming gain (Y) if applicable
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M	wer Levels, provide the inter e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26 1.26	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9 -5.12	ies, their corresponding gains rming gain (Y) if applicable Part number or model name
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level	wer Levels, provide the inter e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26 1.26	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level	wer Levels, provide the inter e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar	wer Levels, provide the inter e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a I 2: dBm ntenna assemblies provide	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1	wer Levels, provide the inter e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a I 2: dBm ntenna assemblies provide	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2	wer Levels, provide the inter e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a I 2: dBm ntenna assemblies provide	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3	wer Levels, provide the interest e.i.r.p. levels also taking in I 1: dBm ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a I 2: dBm ntenna assemblies provide Gain (dBi)	nto account the beamfor ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are ed for this power level: e.i.r.p. (dBm)	ies, their corresponding gains rming gain (Y) if applicable Part number or model name Supported for this power level. Part number or model name Part number or model name
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level	wer Levels, provide the interest e.i.r.p. levels also taking in ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a 12:	antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level	wer Levels, provide the inter e.i.r.p. levels also taking in ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a 12: dBm ntenna assemblies provide Gain (dBi) d more rows in case more a 13:	antenna assemblies are ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar 3 NOTE 4: Add Power Level Number of ar	wer Levels, provide the interest e.i.r.p. levels also taking in ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a 12:	antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level Number of ar Assembly # 1	wer Levels, provide the inter e.i.r.p. levels also taking in ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a 12: dBm ntenna assemblies provide Gain (dBi) d more rows in case more a 13:	antenna assemblies are ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name Part number or model name supported for this power level.
For each of the Pow G) and the resulting Power Level Number of ar Assembly # 1M 2M NOTE 3: Add Power Level Number of ar Assembly # 1 2 3 NOTE 4: Add Power Level Number of ar Assembly #	wer Levels, provide the inter e.i.r.p. levels also taking in ntenna assemblies provide Gain (dBi) 1.26 1.26 d more rows in case more a 12: dBm ntenna assemblies provide Gain (dBi) d more rows in case more a 13:	antenna assemblies are ed for this power level: e.i.r.p. (dBm) -4.9 -5.12 antenna assemblies are ed for this power level: e.i.r.p. (dBm) antenna assemblies are	ies, their corresponding gains rming gain (Y) if applicable Part number or model name supported for this power level. Part number or model name Part number or model name supported for this power level.

NTEK 北测

Page 12 of 79 Report No.: S23051103003002

1.3 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions		
Temperature	15℃ - 35℃	40℃ ~ -10℃ Note: (1)		
Relative Humidity	20% - 75%	N/A		
Supply Voltage	DC 3.87V			


	Test Channel	EUT Channel	Test Frequency (MHz)
F	Lowest	CH00	2402
	Middle	CH19	2440
Ļ	Highest	СН39	2480

Note:

(1) The HT 40 $^\circ\!C$ and LT -10 $^\circ\!C$ was declarated by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.

(2) The measurements are performed at the highest, middle, lowest available channels.

Page 13 of 79 Report No.: S23051103003002

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Item	Equipment	Model/Type No.	Series No.	Note
	E-1	smartphone	N6000	N/A	EUT
	A	4	4		1
S				~	
		* *	C		
	H				2. 2
				5	
			2		

Item	Туре	Shielded Type	Ferrite Core	Length	Note
		- 5			_
X					· ~ ~
				2 2	
			4		<u>a</u>

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

1.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

EQUIPMENT TYPE	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
EMI Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
Turn Table	EM 💉	SC100_1	60531	N/A	N/A	N/A
Antnna Mast 📈	EM	SC100	N/A	N/A	N/A	N/A
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2022.11.07	2023.11.06	1 year
Test Cable (30MHz-1GHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
Test Cable (1-18GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
Pre-Amplifier	EMC	EMC051835SE	980246	2022.06.17	2023.06.16	1 year
Spectrum Analyzer	Agilent	E4407B	MY45108040	2023.03.31	2024.03.30	1 year
Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	33-10-33	AR4010	2023.03.27	2026.03.26	3 year
Attenuator	Weinschel	24-20-34	BP4485	2023.03.27	2026.03.26	🔪 3 year
MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022.06.17	2023.06.16	1 year
ESG VETCTOR SIGNAL GENERAROR	Agilent	E4438C	MY45093347	2023.03.21	2024.03.20	1 year
Power Splitter	Mini-Circuits/ USA	ZN2PD-63-S+	SF025101428	2023.03.27	2026.03.26	3 year
Coupler	Mini-Circuits	ZADC-10-63-S +	SF794101410	2023.03.27	2026.03.26	3 year
Directional Coupler	MCLI/USA	CB11-20	0D2L51502	2020.07.17	2023.07.16	3 year
Attenuator	Agilent	8495B	MY42147029	2023.03.27	2026.03.26	3 year
Power Meter	DARE	RPR3006W	15I00041SNO 84	2022.06.17	2023.06.16	1 year
MXG Vector Signal Generator	Agilent	N5182A	MY47070317	2022.06.16	2023.06.15	1 year
Wideband Radio Communication Tester Specifications	R&S	CMW500	148500	2022.06.16	2023.06.15	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

NTEK 北测

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	ETSI EN 300 328 V2.2.2 (2019-07)	
Clause	Test Item	Results
2	TRANSMITTER PARAMETERS	d d
4.3.2.2	RF Output Power	Pass
4.3.2.3	Power Spectral Density	Pass
4.3.2.4	Duty cycle, Tx-Sequence, Tx-gap	Not Applicable (See Note 1/2)
4.3.2.5	Medium Utilization (MU) factor	Not Applicable (See Note 1/2)
4.3.2.6	Adaptivity	Not Applicable (See Note 1)
4.3.2.7	Occupied Channel Bandwidth	Pass
4.3.2.8	Transmitter unwanted emission in the OOB domain	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
	RECEIVER PARAMETERS	*
4.3.2.10	Receiver Spurious Emissions	Pass
4.3.2.11	Receiver Blocking	Pass

Note:

- 1. These requirements do not apply for equipment with a maximum declared RF output power of less than 10 dBm EIRP or for equipment when operating in a mode where the RF output power is less than 10 dBm EIRP.
- 2. These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode
- 3. The antenna gain provided by customer is used to calculate the EIRP result. NTEK is not responsible for the accuracy of antenna gain parameter.

2.1 TEST FACILITY

Shenzhen NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China FCC Registered No.: 463705 IC Registered No.:9270A-1 CNAS Registration No.:L5516

2.2 MEASUREMENT UNCERTAINTY

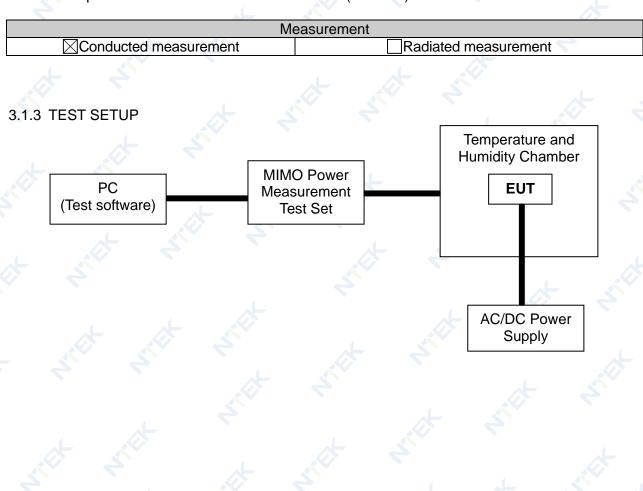
For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1[4] and shall correspond to an expansion factor(coverage factor) k=1.96 or k=2 (which provide confidence levels of respectively **95** % and **95.45** % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Measurement uncertainty				
No.	Item	Uncertainty (P=95)		
1	Occupied Channel Bandwidth	± 4.7%		
2	RF output Power,conducted	± 0.9dB		
3 Power Spectral Density, conducted		± 2.6dB		
4	Unwanted emissions, conducted	± 2.2dB		
5	All emissions, radiated	± 5.3dB		
6	Temperature	± 0.5°C		
7	Humidity	± 2.0%		
8	Time	± 1.0%		

Page 18 of 79 Report No.: S23051103003002

3. TEST PROCEDURES AND RESUTLS

3.1 EQUIVALENT ISOTROPIC RADIATED POWER


3.1.1 LIMITS OF EQUIVALENT ISOTROPIC RADIATED POWER

Refer to chapter 4.3.2.2.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	
Non-adaptive wide band modulations systems	Equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.	
Adaptive wide band modulations systems	≤20dBm	

3.1.2 TEST PROCEDURE

Refer to chapter 5.4.2.2 of ETSI EN 300 328 V2.2.2 (2019-07)

3.1.4 TEST RESULTS

EUT :	smartphone	Model Name :	N6000
Temperature :	20 °C	Relative Humidity:	55 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX Low channel / Middle Channel / High Channel		

Test data reference attachment

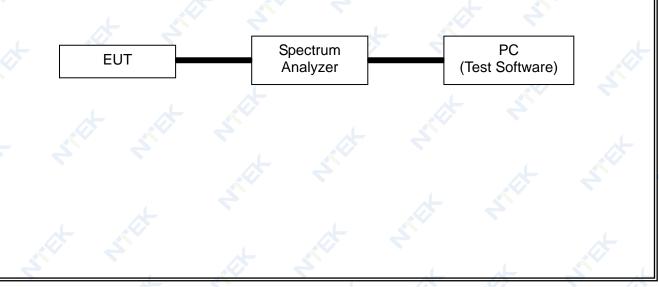
3.2. PEAK POWER DENSITY

3.2.1 LIMITS OF POWER SPECTRAL DENSITY

Refer to chapter 4.3.2.3.3 of ETSI EN 300 328 V2.2.2 (2019-07)

RF OUTPUT POWER		
Condition	Limit	7
For equipment using wide band modulations other than FHSS	≤10 dBm/MHz	

3.2.2 TEST PROCEDURE


Refer to chapter 5.4.3.2 of ETSI EN 300 328 V2.2.2 (2019-07)

IVIE	easurement
Conducted measurement	Radiated measurement

The setting of the Spectrum Analyzer

Start Frequency	2400MHz
Stop Frequency	2483.5MHz
Detector	RMS
	> 8 350; for spectrum analysers not supporting this number of
Sweep Point	sweep points, the
	frequency band may be segmented
	For non-continuous transmissions: 2 × Channel Occupancy Time
A S	× number of sweep points
Sweep time:	For continuous transmissions: 10 s; the sweep time may be
7	increased further until a value where the sweep time has no
× 4	further impact anymore on the RMS value of the signal.
RBW / VBW	10KHz / 30KHz

3.2.3 TEST SETUP

3.2.4 TEST RESULTS

EUT :	smartphone	Model Name :	N6000
Temperature :	26 °C	Relative Humidity:	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		<u>k</u> 5

Test data reference attachment

Report No.: S23051103003002

3.3. OCCUPIED CHANNEL BANDWIDTH

3.3.1 LIMITS OF OCCUPIED CHANNEL BANDWIDTH Refer to chapter 4.3.2.7.3 of ETSI EN 300 328 V2.2.2 (2019-07)

OCCUPIED CHANNEL BANDWIDTH		
	Condition	Limit
All types of equi	oment using wide band modulations other than FHSS	Shall fall completely within the band 2400 to 2483.5 MHz
Additional	For non-adaptive using wide band modulations other than FHSS system and E.I.R.P >10 dBm	Less than 20 MHz
requirement	For non-adaptive frequency hopping system and E.I.R.P >10 dBm	Less than 5 MHz

3.3.2 TEST PROCEDURE

Refer to chapter 5.4.7.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Refer to chapter 5.4.7.2	2 01 L 1 31 L 1 300 320	(VZ.Z.Z (Z019-01)	
	M	easurement	
Conducted r	neasurement	Radiated measurement	
The setting of the Spect	rum Analyzer		
Center Frequency	The centre frequence	cy of the channel under test	
Frequency Span	2 × Nominal Channel Bandwidth		
Detector	RMS		
RBW	~ 1 % of the span without going below 1 %		
VBW	3 × RBW		
Trace	Max hold		
Sweep time	1s		

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the ststed frequency range. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator. Controlling software has been activated to set the EUT on specific status.

Page 23 of 79 Report No.: S23051103003002

3.3.5 TEST RESULTS

EUT:	smartphone	Model Name :	N6000
Temperature :	26 °C	Relative Humidity :	60 %
Pressure :	1012 hPa	Test Voltage :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH19/CH39)		

Test data reference attachment

3.4. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

3.4.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN Refer to chapter 4.3.2.8.3 of ETSI EN 300 328 V2.2.2 (2019-07)

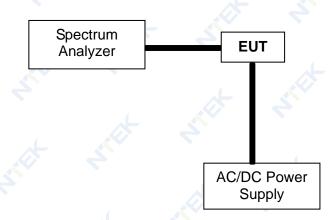
	TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN		
Condition Limit			
U	nder all test conditions	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.	

Out Of Band Domain (OOB)	Allocated Band	Out Of Band Domain (OOB)	Spurious Domain
A			
			><>

- A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

3.4.2 TEST PROCEDURE


Refer to chapter 5	4.8.2 of ETSI	EN 300 328	V2.2.2	(2019-07)
i to onaptor o		EI1 000 020	v ,	

	Measurement
Conducted measure	ment Radiated measurement
The setting of the Spectrum Ana	alyzer
Span 🧹 🔶	0Hz
Filter Mode	Channel Filter
Trace Mode	Max Hold
Trigger Mode	Video trigger; in case video triggering is not possible, an external trigger source may be used
Detector	RMS _
Sweep Point / Sweep Mode	Sweep Time [s] / (1 μs) or 5 000 whichever is greater/ Continuous
RBW / VBW	1MHz / 3MHz

3.4.3 DEVIATION FROM TEST STANDARD

No deviation

3.4.4 TEST SETUP

According to the ETSI EN 300328 V2.2.2 clause 5.4.8.1: These measurements shall only be performed at normal test conditions. For equipment using FHSS modulation, the measurements shall be performed during normal operation (hopping).

For equipment using wide band modulations other than FHSS, the measurement shall be performed at the lowest and the highest channel on which the equipment can operate. These operating channels shall be recorded.

The equipment shall be configured to operate under its worst case situation with respect to output power.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz), then each channel bandwidth shall be tested separately.

3.4.5 TEST RESULTS

EUT :	smartphone	Model Name :	N6000
Temperature :	24 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	TX-GFSK(CH00/CH39)		X X X

Test data reference attachment

3.5. ADAPTIVE (CHANNEL ACCESS MECHANISM)

3.5.1 APPLICABILITY OF ADAPTIVE REQUIREMENTS AND LILIT FOR WIDE BAND MODULATION TECHNIQUES

Refer to chapter ETSI EN 300 328 V2.2.2 (2019-07)

1					
		Operational Mode			
		LBT based Detect and Avo			nd Avoid
	Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as note 2)
	Minimum Clear Channel Assessment (CCA) Time	NA	not less than 18 us (see note 1)	(see note 2)	not less than 18 us (see note 1)
	Maximum Channel Occupancy (COT) Time	<40 ms	1ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)
	Minimum Idle Period	5 % minimum of 100 μs	5% of COT	(see note 2)	NA
	Extended CCA check	🔶 NA 🔨	NA	(see note 2)	R*CCA (see note 4)
	Short Control Signalling Transmissions	Maximur	n duty cycle of 10% (:	within an observationsee note 5)	on period of 50 ms

Note 1: The CCA time used by the equipment shall be declared by the supplier.

Note 2: Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect as described in IEEE 802.11[™]-2012 [i.3], clause 9, clause 10, clause 16, clause 17, clause 19 and clause 20, or in IEEE 802.15.4[™]-2011 [i.4], clause 4, clause 5 and clause 8 providing the equipment complies with the conformance requirements referred to in clause 4.3.2.6.3.4. Note 3: g is selected by the manufacturer in the range [4...32]

Note 4: The value of R shall be randomly selected in the range [1...q]

Note 5: Adaptive equipment may or may not have Short Control Signaling Transmissions.

Interference threshold level

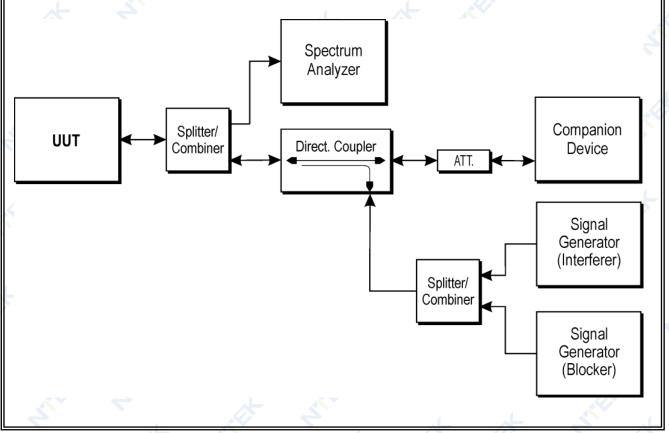
The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels less than 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

TL = -70 dBm/MHz + 10 × log10 (100 mW / Pout) (Pout in mW e.i.r.p.)

NTEK 北测

Table 9: Unwanted Signal parameters			
Wanted signal mean power	Unwanted signal	Unwanted CW	I
from companion device	frequency 🦾 🦯	signal power (dBm)	1
(dBm)	(MHz)		I
-30/ sufficient to maintain the	2 395 or 2 488,5	-35	Ś
link(see note 2)	(see note 1)	(see note 2)	Þ

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.


3.5.2 TEST PROCEDURE

Refer to chapter 5.4.6.2 of ETSI EN 300 328 V2.2.2 (2019-07)

Μ	leasurement
Conducted measurement	Radiated measurement

Test method please refer to the 5.4.6.2.1.4 of ETSI EN 300 328 V2.2.2 (2019-07)

3.5.3 TEST SETUP CONFIGURATION

N2017.06.06.0614.V.1.2

Report No.: S23051103003002

3.5.4 LIST OF MEASUREMENTS

	UUT operational Mode	
Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced)
	V	

Clause	Test Parameter	Remarks	PASS/FAIL
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	N/A
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	N/A	N/A
4.3.2.5.3	Short Control Signaling Transmissions	N/A <	N/A

3.5.5 TEST RESULTS

EUT :	smartphone	Model Name :	N6000
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Test Power :	N/A
Test Mode :	N/A		<u>k</u> <u>s</u>

Note: Not Applicable

3.6. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

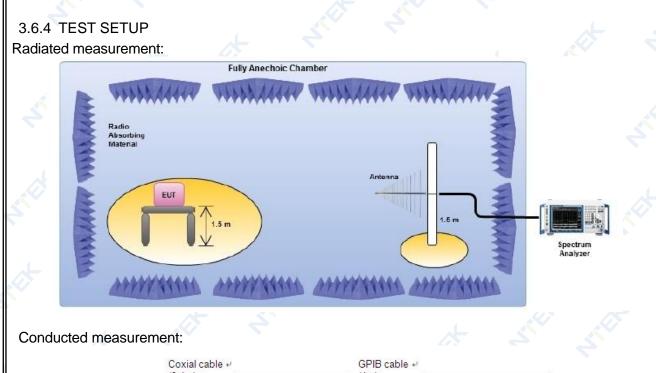
3.6.1 LIMITS OF TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN Refer to chapter 4.3.2.9.3 of ETSI EN 300 328 V2.2.2 (2019-07)

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54dBm	100 kHz
74 MHz to 87.5 MHz	-36dBm	100 kHz
87.5 MHz to 118 MHz	-54dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 694 MHz	-54dBm	100 kHz
694 MHz to 1 GHz	-36dBm	100 kHz
1 GHz ~ 12.75 GHz	-30dBm	1 MHz

3.6.2 TEST PROCEDURE

NTEK 北测[®]


Refer to chapter 5.4.9.2 of ETSI EN 300 328 V2.2.2 (2019-07)

			2	,L			
Measurement							
Conducted measurement							
The setting of the Spectrum Analyzer							
RBW 100K(<1GHz) / 1M(>1GHz)							
VBW	300K(<1GHz) / 3M(>1GHz)						

3.6.3 DEVIATION FROM TEST STANDARD

No deviation

NTEK 北测

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.

4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

Report No.: S23051103003002

3.6.5 TEST RESULTS(Radiated measurement)

BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)								
EUT :	smartphone	Model Name :	N6000					
Temperature :	24°C	Relative Humidity :	57 %					
Pressure :	1012 hPa 💉 🥂	Test Voltage :	DC 3.87V 🖉					
Test Mode :	TXGFSK(CH00)							

	Polar (H/V)	Frequency	Meter Reading	Factor Emission Level		Limits	Margin	Remark
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
	V	46.60	-68.81	11.20	-57.61	-36	-21.61	peak
	V	107.38	-67.24	9.97	-57.27	-54	-3.27	peak
	V	188.69	-70.50	11.07	-59.43	-54	-5.43	peak
	V	459.54	-68.49	9.65	-58.84	-36	-22.84	peak
	V	643.38	-67.04	10.95	-56.09	-54	-2.09	peak
	Н	36.03	-72.28	10.58	61.70	 -36 	-25.70	peak
	H	112.16	-71.60	9.96	-61.64	-54	-7.64	peak
	Н	223.62	-69.15 🏑	9.79	-59.36	-54	-5.36	peak
	Н	239.28	-67.63	11.39	-56.24	-36	-20.24	peak
	Н	683.52 📈	-75.86	10.36	-65.50	-54	-11.50	peak

Remark:

1.Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
2.All the modes had been tested, but only the worst data recorded in the report.

Report No.: S23051103003002

UT : smartphone smartphone semperature : 26°C			Model NameN6000Relative Humidity60 %Test VoltageDC 3.87V					
							ressure : 1012 hPa	
st Mode		 SK (СН00/СН19					0/CH30)	<u></u>
st mout			5/01133)		4			
Polar	Frequency	ency Meter Fa		Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	Remark	
		ol	peration fre	equency:2402			2	
V	2883.157	73.18	10.06	-63.12	-30	-33.12	peak	
V	4443.166	-69.87	9.63	-60.24	-30	-30.24	peak	
V	2874.637	-71.19	10.63	-60.56	-30	-30.56	peak	
V	5027.947	-70.51	10.73	-59.78	-30	-29.78	peak	
Н	2993.359	-70.94	10.85	-60.09	-30	-30.09	peak	
Н	3221.042	-73.73	11.09	-62.64	-30	-32.64	peak	
Н	2948.733	-69	10.78	-58.22	-30	-28.22	peak	
H	4473.143	-70.48	11.37	-59.11 🤝	-30	-29.11	peak	
operation frequency:2440								
V	2538.171	-75.62	11.09	-64.53	-30	-34.53	peak	
V	3030.176	-69.23	9.81	-59.42	-30	-29.42	peak	
V	2527.062	-67.09	11.54	-55.55	-30	-25.55	peak	
V	5114.49	-71.25	10.92	-60.33	-30	-30.33	peak	
H	2084.692	-72.81	10.05	-62.76	-30	-32.76	peak	
Н	3392.557	-75.36	11.46	-63.90	-30	-33.90	peak	
Н	2105.408	-67.94	9.77	-58.17	-30	-28.17	peak	
Н	3686.226	-73.18	9.62	-63.56	-30	-33.56	peak	
operation frequency:2480								
V	2469.242	-75	10.05	-64.95	-30	-34.95	peak	
V	4829.006	-68.74	10.20	-58.54	-30	-28.54	peak	
V	2004.991	-76.97	10.67	-66.30	-30	-36.30	peak	
V	3473.438	-75.14	11.49	-63.65	-30	-33.65	peak	
Н	2779.84	-75.83	10.02	-65.81	-30	-35.81	peak	
Н	5812.955	-69.27	11.47	-57.80	-30	-27.80	 peak 	
Н	2210.913	-69.7	10.96	-58.74	-30	-28.74	peak	
Н	4454.296	-74.38	10.61	-63.77	-30	-33.77	peak	

Remark:

Emission Level= Meter Reading+ Factor, Margin= Limit- Emission Level.
 All the modes had been tested, but only the worst data recorded in the report.

Page 35 of 79 Report No.: S23051103003002

3.6.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

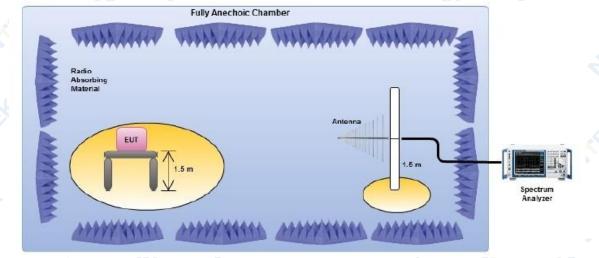
3.7. RECEIVER SPURIOUS RADIATION

3.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION Refer to chapter 4.3.2.10.3 of ETSI EN 300 328 V2.2.2 (2019-07)

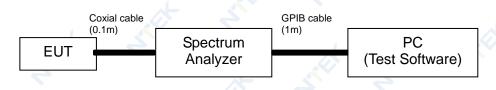
RECEIVER SPURIOUS EMISSIONS					
Frequency Range	Maximum Power Limit (E.R.P.(≤1 GHz) E.I.R.P.(> 1 GHz))	Measurement Bandwidth			
30 MHz ~ 1 GHz	-57dBm	100KHz			
1 GHz ~ 12.75 GHz	-47dBm	1MHz			

3.7.2 TEST PROCEDURE

Refer to chapter 5.4.10.2 of ETSI EN 300 328 V2.2.2 (2019-07)


Measurement							
Conducted measurement					urement		
The setting of the Spectrum Analyzer							
RBW	100K(<1GHz) / 1M	(>1GHz)	X				
VBW	300K(<1GHz) / 3M	(>1GHz)	1 C	4	X		

3.7.3 DEVIATION FROM TEST STANDARD


No deviation

3.7.4 TEST SETUP

Radiated measurement:

Conducted measurement:

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 4. The test setup has been constructed as the normal use condition. Controlling software has been activated to set the EUT on specific status.

3.7.5 TEST RESULTS(Radiated measurement)

	RX BELOW 1 GHz WORST- CASE DATA(30 MHz ~ 1GHz)						
EUT : smartphone Model Name : N6000							
Temperature :	26°C	Relative Humidity :	60 %				
Pressure :	1012 hPa	Test Voltage :	DC 3.87V 🙏 🔨				
Test Mode :	RX Mode-GFSK(CH00)						

		*					
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)	
V	42.45	-82.61	13.11	-69.50	-57	-12.50	peak
- V	100.414	-80.43	11.69	-68.74	-57	-11.74	peak
V	223.014	-77.24	18.99	-58.25	-57	-1.25	peak
V	350.59	-80.91	11.78	-69.13	-57	-12.13	peak
V	552.244	-84.06	11.56	-72.50	-57	-15.50	peak
Н	46.756	-83.18	18.61	-64.57	-57	-7.57	peak
H	100.349	-84.06	18.13	-65.93	-57	-8.93	peak
H	219.933	-79.81	10.42	-69.39	-57	-12.39	peak
Н	455.046	-78.89 📈	15.05	-63.84	-57	-6.84	peak
Н	630.304	-80.82	14.73	-66.09	-57	-9.09	peak

Remark:

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit

2. All the modes had been tested, but only the worst data recorded in the report.

Page 38 of 79 Report No.: S23051103003002

NTEK 北测[®]

	RX ABOVE 1 GHz WORST- C	ASE DATA(1GHz ~	12.75GHz)
EUT :	smartphone	Model Name :	N6000
Temperature :	24 ℃	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	RX Mode-GFSK(CH00)	7	* *

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBm)	(dB) (dBm) (dBm	(dBm)	(dB)		
V	2354.287	-83.8	10.02	-73.78	-47	-26.78	peak
V	5094.359	-77.08	9.89	-67.19	-47	-20.19	peak
V	2061.381	-83.22	10.06	-73.16	-47	-26.16	peak
V	4774.814	-79.43	16.22	-63.21	-47	-16.21	peak
Н	2329.86	-79.54	10.22	-69.32	-47	-22.32	peak
Н	5379.98	-82.93	10.78	-72.15	-47	-25.15	peak
Н	2548.387	-79.78	8.79	-70.99	-47	-23.99	peak
Н	3202.434	-78.18	14.62	-63.56	-47	-16.56	peak

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit

2. All the modes had been tested, but only the worst data recorded in the report.

3.7.6 TEST RESULTS (Conducted measurement)

Test data reference attachment

3.8. RECEIVER BLOCKING

3.8.1 PERFORMANCE CRITERIA

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

3.8.2 LIMITS OF RECEIVER BLOCKING

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency	(dBm) (see note 4)	signal
(see notes 1 and 4)	(MHz)		V
(-133 dBm + 10 × log₁₀(OCBW))	2 380	-34	CW
or -68 dBm whichever is less	2 504		×
(see note 2)			
(-139 dBm + 10 × log₁₀(OCBW))	2 300		2
	2 330	2 2	
or -74 dBm whichever is less	2 360		
(see note 3)	2524		
	2584		2
	2674		

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Page 40 of 79 Report No.: S23051103003002

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal Frequency (MHz)	s receiver category 2 equ Blocking signal power (dBm) (see note 3)	Type of blocking signal
$(-139 \text{ dBm} + 10 \times \log_{10}(\text{OCBW}) + 10 \text{ dB})$	2 380	-34	CW
or (-74 dBm + 10 dB) whichever is less	2 504		A S
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Table 16: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from	Blocking signal	Blocking signal power	Type of blocking
companion device (dBm)	Frequency (MHz)	(dBm) (see note 2)	signal
(-139 dBm + 10 × log₁₀(OCBW) + 20 dB)	2 380	-34	CW
or (-74 dBm + 20 dB) whichever is less	2 504	A Contraction	
(see note 2)	2 300		
	2 584		

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

3.8.3 TEST PROCEDURE Refer to chapter 5.4.11.2 of ETSI EN 300 328 V2.2.2 (2019-07) Measurement Conducted measurement Radiated measurement 3.8.4 DEVIATION FROM TEST STANDARD No deviation 3.8.5 TEST SETUP Variable attenuator Performance step size ≤ 1 dB Monitoring Device Signalling Unit or Companion Device ATT. Direct. Coupler Splitter/ ATT. UUT Combiner Blocking Signal Source Spectrum Analyzer Optional

Report No.: S23051103003002

3.8.6 TEST RESULTS

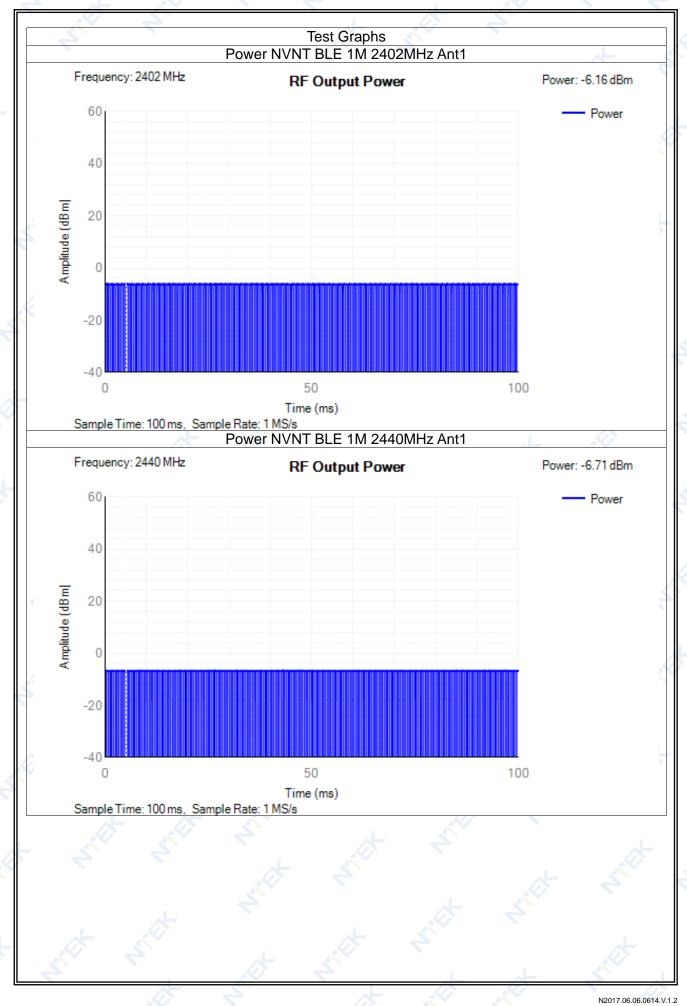
EUT :	smartphone	Model Name :	N6000
Temperature :	24 °C	Relative Humidity	54%
Pressure :	1010 hPa	Test Power :	DC 3.87V
Test Mode :	GFSK-RX Mode (CH00/CH39)- 11	M 🔬 🚺	

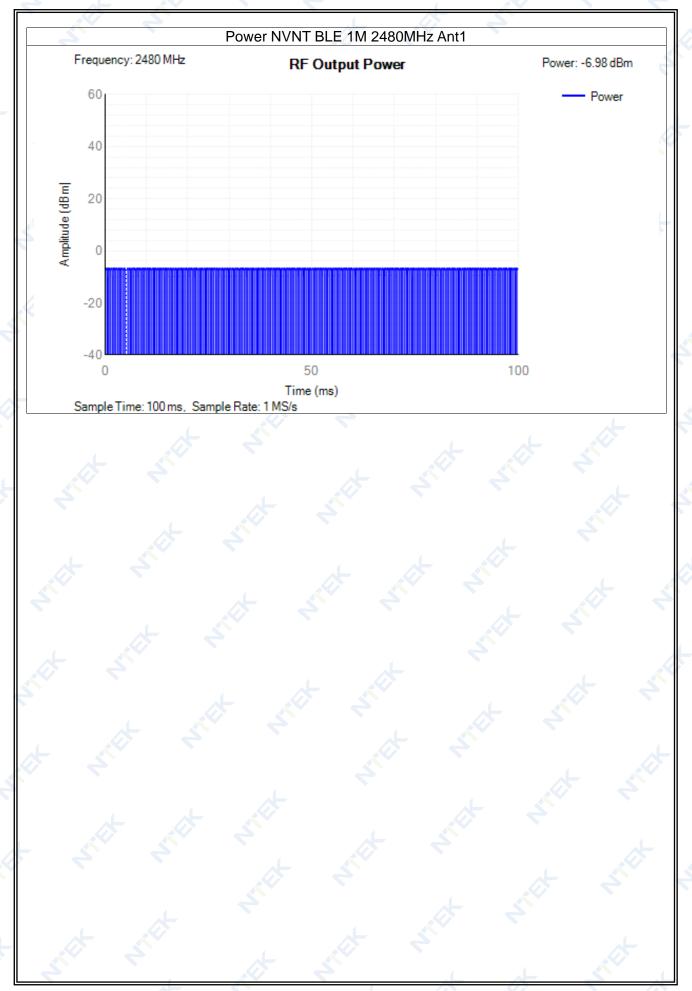
CH00:

receiver category 3							
Wanted signal mean power from companion	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit %			
device (dBm) Note(1)							
	2 380	~ ~	0.32%	≤10%			
	2 504	•	0.44%	1070			
-58.86	2 300	-34	0.26%	100/			
	2 584		0.95%	≦10%			

CH39:

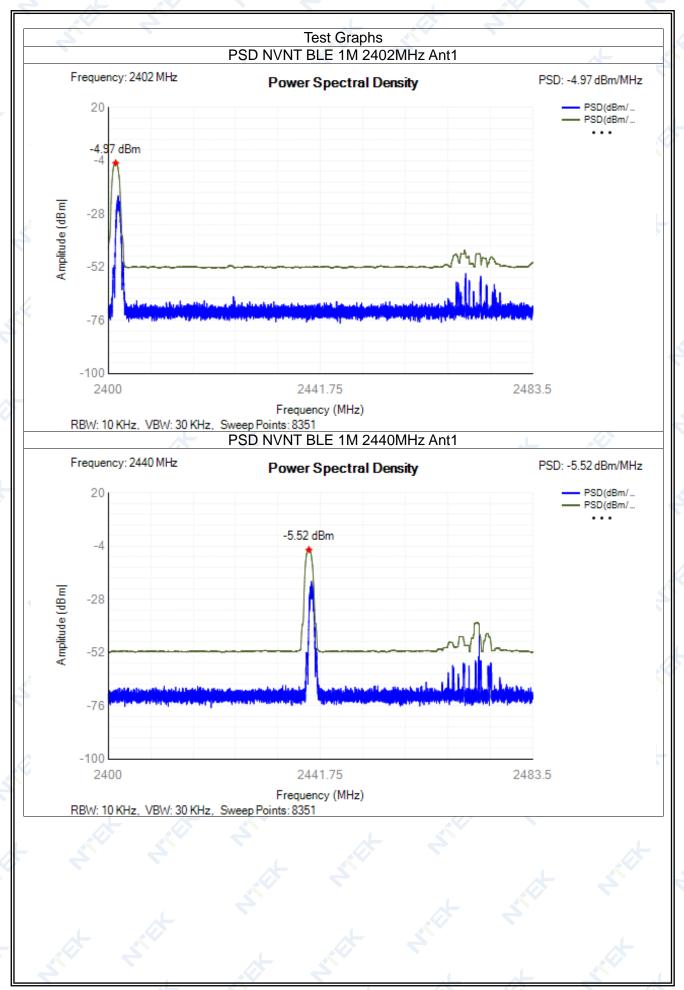
receiver category 3							
Wanted signal mean power from companion device (dBm) _{Note(1)}	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	PER %	PER Limit			
	2 380 2 504		0.73% 0.23%	- ≤10%			
-58.86	2 300 2 584	-34	0.41% 0.10%	≤10%			

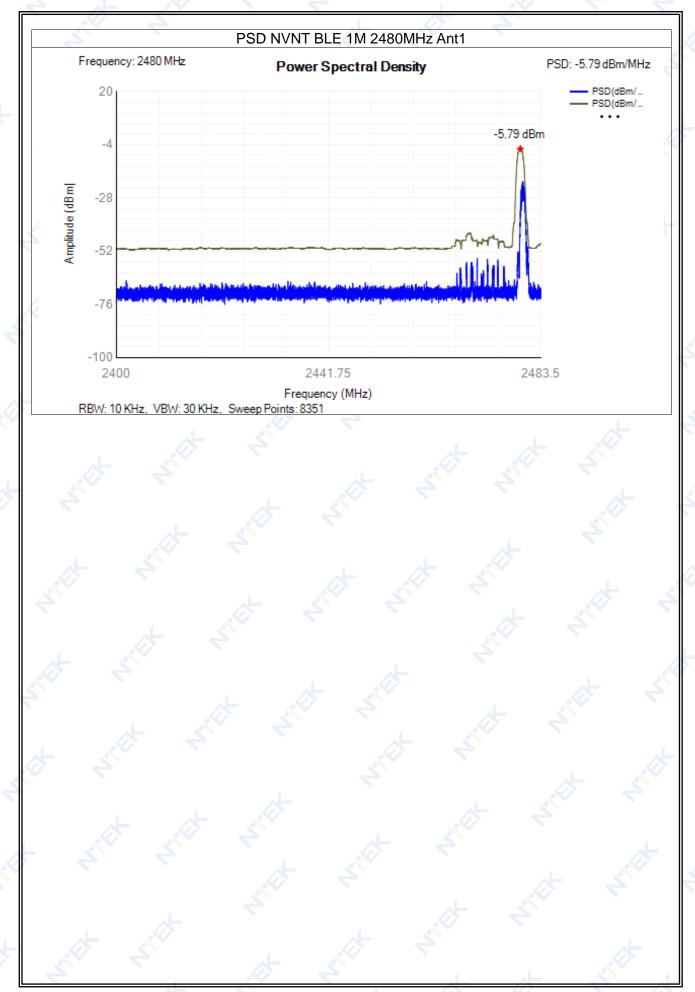

Note: (1) The above results were obtained from laboratory tests.


4. TEST RESULTS

1M

4.1 RF Output Power


Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-6.16	160	-4.9	20	Pass
NVNT	BLE 1M	2440	Ant1	-6.71	161	-5.45	20	Pass
NVNT	BLE 1M	2480	Ant1	-6.98	160	-5.72	20	Pass
NVLT	BLE 1M	2402	Ant1	-6.18	_ 160 🗸	-4.92	20	Pass
NVLT	BLE 1M	2440	Ant1	-6.98	161 🔽	-5.72	20	Pass
NVLT	BLE 1M	2480	Ant1	-7.21	160	-5.95	20	Pass
NVHT	BLE 1M	2402	Ant1	-6.37	160	-5.11	20	Pass
NVHT	BLE 1M	2440	Ant1	-7.33	161	-6.07	20	Pass
NVHT 📈	BLE 1M	2480	Ant1	-7.49	160	-6.23	20	Pass



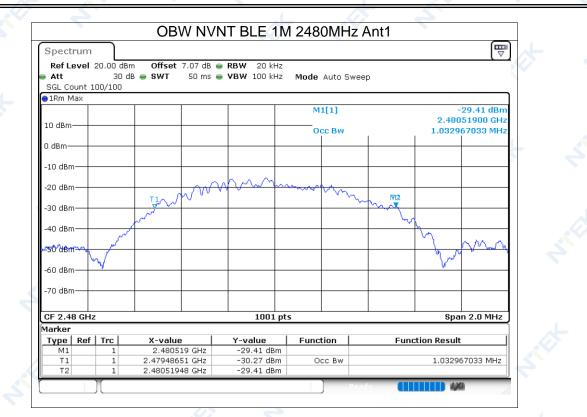
4.2 Power Spectral Density

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	-4.97	10	Pass
NVNT	BLE 1M	2440	Ant1	-5.52	10	Pass
NVNT	BLE 1M	2480	Ant1	-5.79	10	Pass

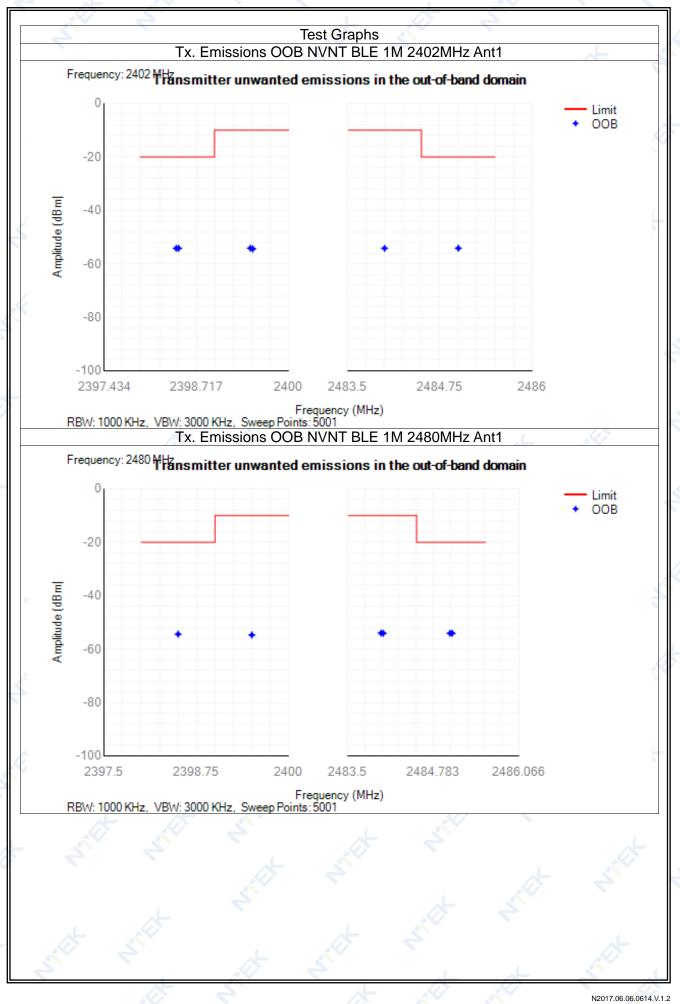
Page 49 of 79

Report No.: S23051103003002

4.3 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	2402.005	1.033	2401.489	2402.521	2400 - 2483.5MHz	Pass
NVNT	BLE 1M	2440	Ant1	2440.003	1.033	2439.487	2440.519	2400 - 2483.5MHz	Pass
NVNT	BLE 1M	2480	Ant1	2480.003	1.033	2479.487	2480.519	2400 - 2483.5MHz	Pass

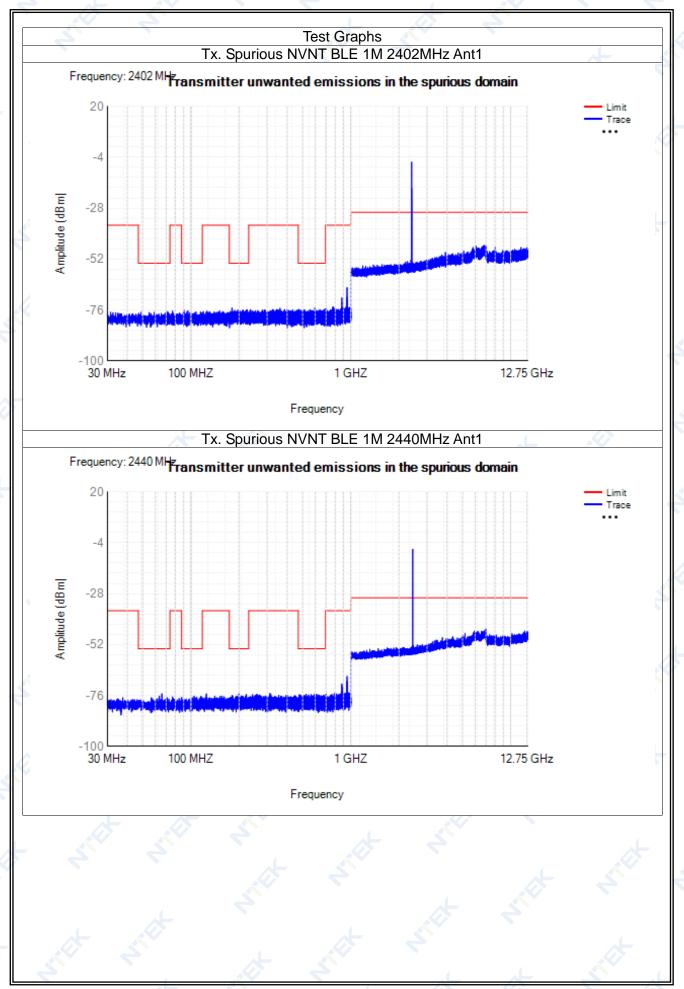
Page 50 of 79

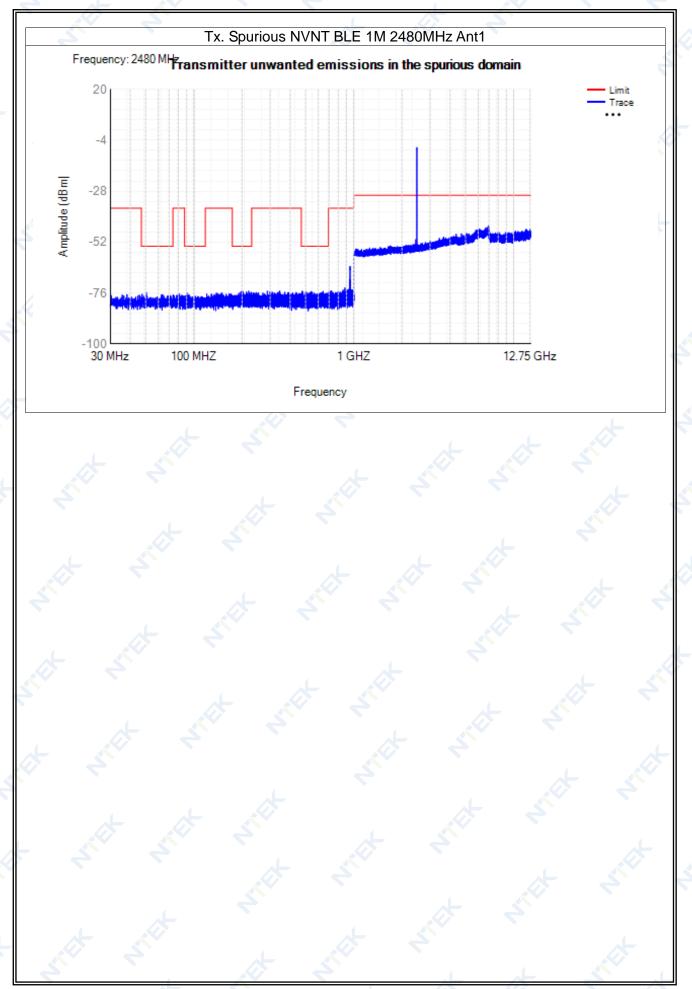


Page 51 of 79

Report No.: S23051103003002

Condition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	2399.5	-54.37	-10	Pass
NVNT	BLE 1M	2402	Ant1	2399.467	-54.13	-10	Pass
NVNT	BLE 1M	2402	Ant1	2398.467	-54.16	-20	Pass
NVNT	BLE 1M	2402	Ant1	2398.434	-54.19	-20	Pass
NVNT	BLE 1M	2402	Ant1	2484	-54.17	-10	Pass
NVNT	BLE 1M	2402	Ant1	2485	-54.14	-20	Pass
	BLE 1M	2480	Ant1	2399.5	-54.71	-10	Pass
NVNT	BLE 1M	2480	Ant1	2398.5	-54.4	-20	Pass
NVNT	BLE 1M	2480	Ant1	2484	-54	-10	Pass
NVNT	BLE 1M	2480	Ant1	2484.033	-54.05	-10	Pass
NVNT	BLE 1M	2480	Ant1	2485.033	-54.06	-20	Pass
NVNT	BLE 1M	2480	Ant1	2485.066	-54.07	-20	Pass

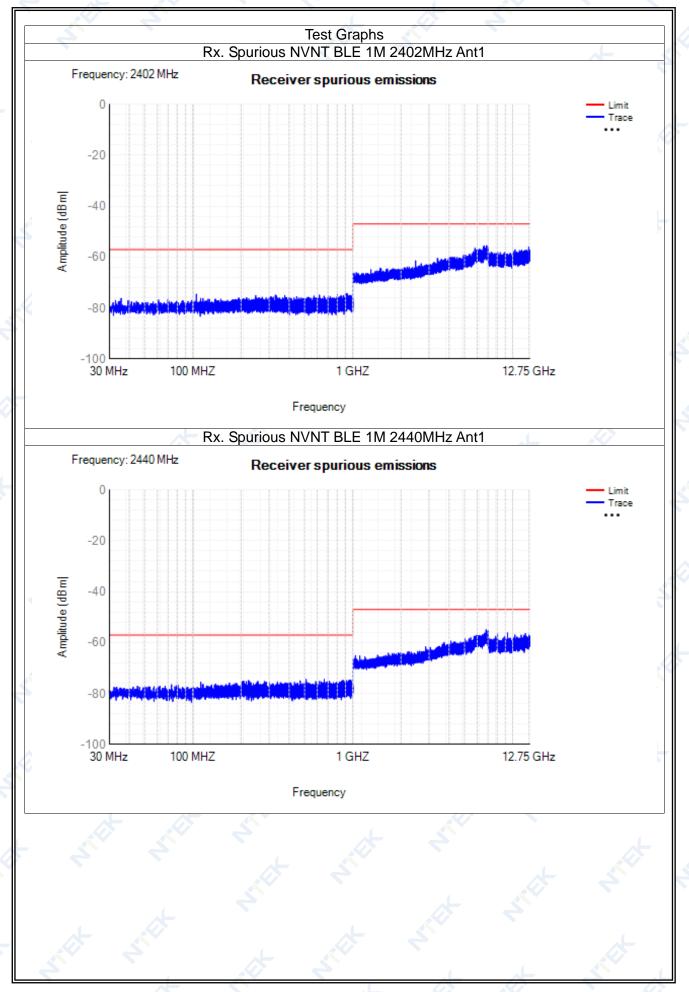


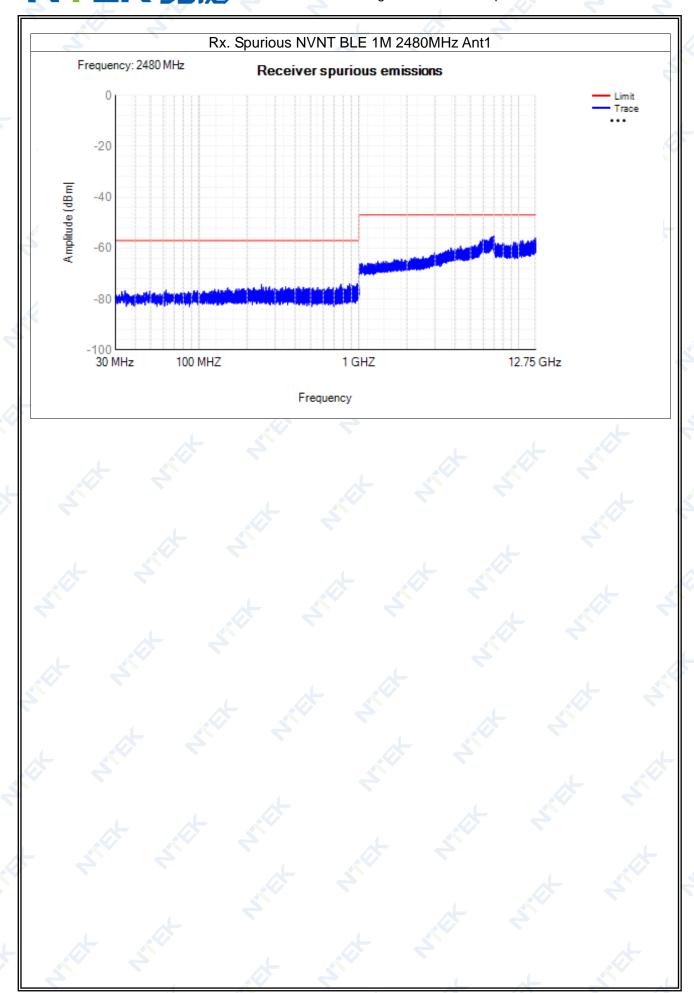

Page 54 of 79

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdic
NVNT	BLE 1M	2402	Ant1	30 -47	31.45	-77.02	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	47 -74	71.55	-76.74	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	74 -87.5	76.70	-76.43	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	87.5 -118	90.35	-75.91	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	> 118 -174	151.25	-76.41	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	174 -230	180.75	-75.01	NA 🎺	-54	Pass
	BLE 1M	2402	Ant1	230 -470	361.35	-75.20	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	470 -694	596.60	-74.93	NA	-54	Pass
NVNT	BLE 1M	2402	Ant1	694 -1000	948.15	-65.42	NA	-36	Pass
NVNT	BLE 1M	2402	Ant1	1000	2378.00	-52.39	NA	-30	Pass
NVNT	BLE 1M	2402	Ant1	2485.5 -12750	6828.50	-45.49	NA	-30	Pass
NVNT	BLE 1M	2440	Ant1	30 -47	37.50	-77.00	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	47 -74	65.85	-75.12	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	74 -87.5	76.70	-76.64	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	87.5 -118	104.65	-76.30	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	118	124.95	-75.20	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	174 -230	199.60	-75.13	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	230 -470	312.40	-74.96	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	470 -694	526.05	-75.38	NA	-54	Pass
NVNT	BLE 1M	2440	Ant1	-094 694 -1000	948.20	-66.98	NA	-36	Pass
NVNT	BLE 1M	2440	Ant1	-1000 1000 -2398	2397.00	-53.22	NA	-30	Pass
NVNT	BLE 1M	2440	Ant1	-2398 2485.5 -12750	6984.50	-44.64	NA	-30	Pass
NVNT	BLE	2480	Ant1	30 -47	38.20	-76.70	NA	-36	Pass
NVNT	1M BLE	2480	Ant1	47 -74	50.40	-75.72	NA	-54	Pass
NVNT	1M BLE	2480	Ant1	74	80.90	-76.34	NA	-36	Pass
NVNT	1M BLE	2480	Ant1	-87.5 87.5	90.40	-75.82	NA	-54	Pass
NVNT	1M BLE	2480	Ant1	-118 118	150.10	-75.84	NA	-36	Pass
	1M BLE	2480	,	-174 174	100.10				. 400

Page 55 of 79

	-							· · · · · · · · · · · · · · · · · · ·		
NVNT	BLE 1M	2480	Ant1	230 -470	344.70	-74.97	NA	-36	Pass	
NVNT	BLE 1M	2480	Ant1	470 -694	475.90	-75.10	NA	-54	Pass	
NVNT	BLE 1M	2480	Ant1	694 -1000	948.20	-63.42	NA	-36	Pass	
NVNT	BLE 1M	2480	Ant1	1000 -2398	2343.50	-53.13	NA	-30	Pass	
NVNT	BLE 1M	2480	Ant1	2485.5 -12750	6958.50	-44.26	NA	-30	Pass	

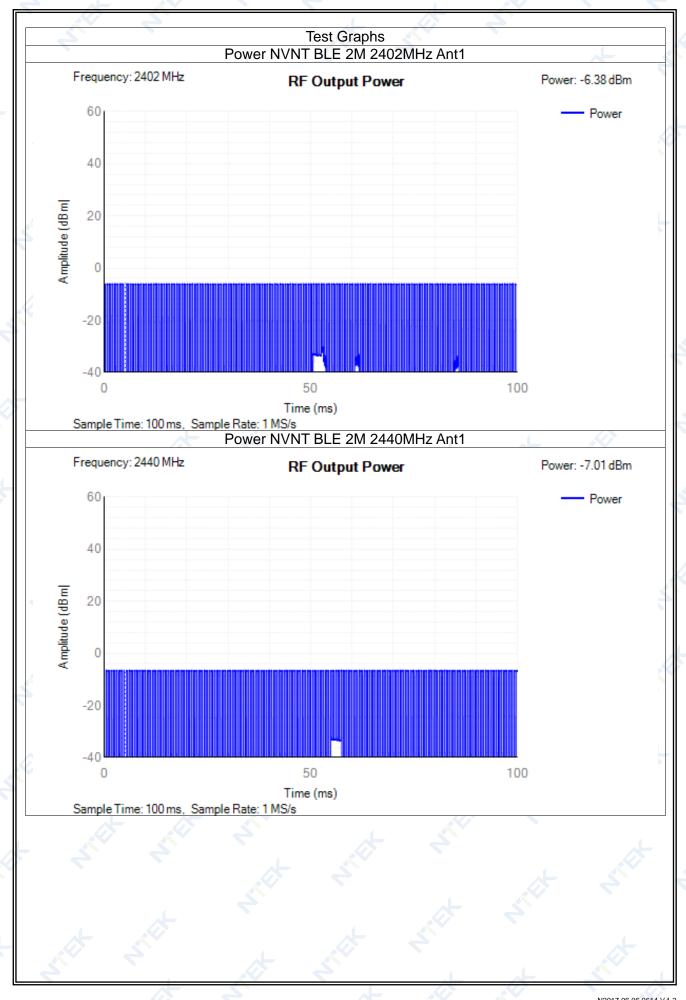


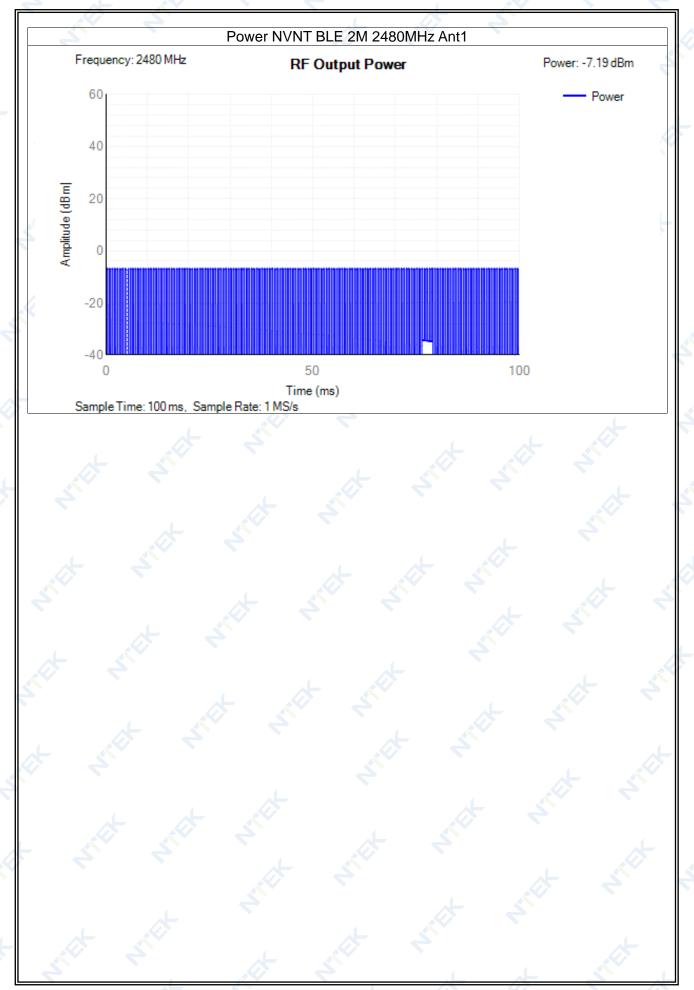

Report No.: S23051103003002

4.6 Receiver spurious emissions

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	30 -1000	904.85	-74.13	NA	-57	Pass
NVNT	BLE 1M	2402	Ant1	1000 -12750	6852	-55.49	NA	-47	Pass
NVNT	BLE 1M	2440	Ant1	30 -1000	511	-74.43	NA	-57	Pass
NVNT	BLE 1M	2440	Ant1	1000 -12750	6817	-54.91	NA	-47	Pass
NVNT	BLE 1M	2480	Ant1	30 -1000	976.9	-73.94	NA	-57	Pass
NVNT	BLE 1M	2480	Ant1	1000 -12750	6978.5	-55.19	NA	-47	Pass

Report No.: S23051103003002

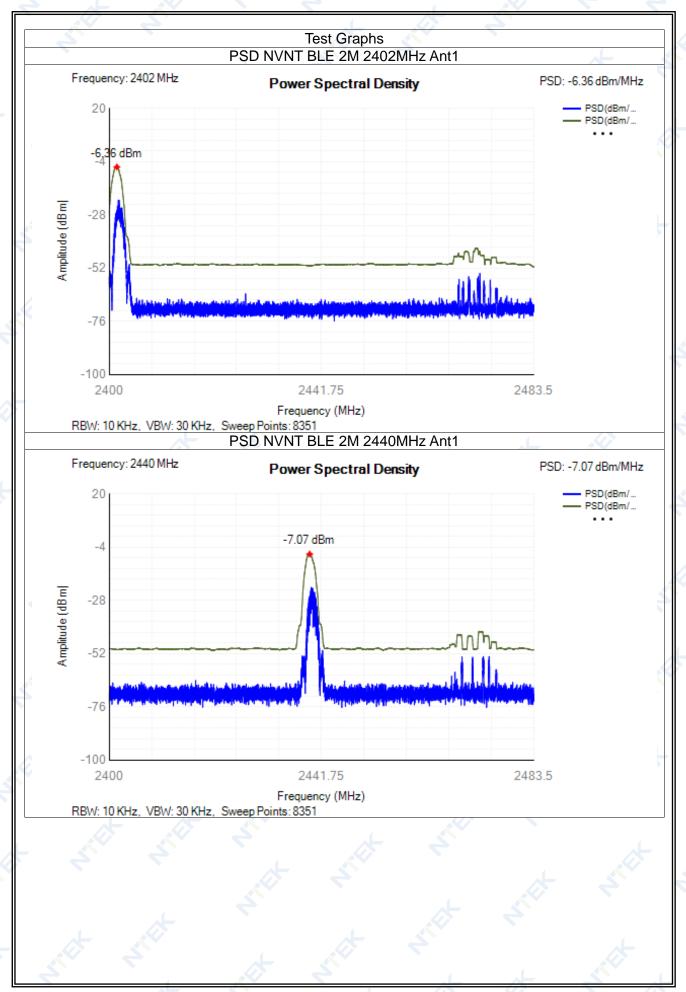


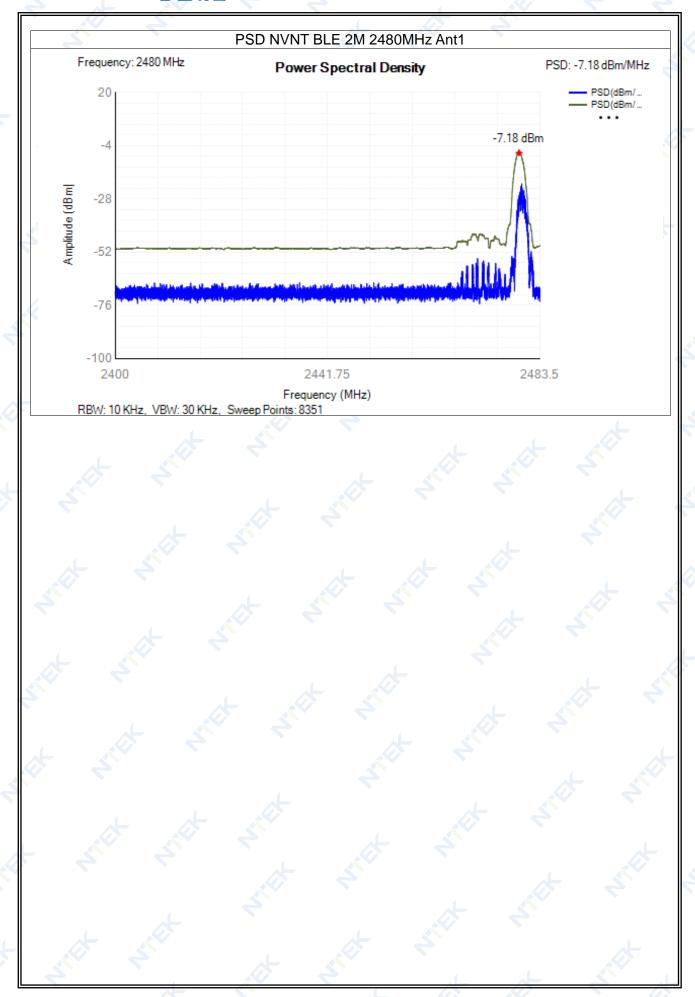

2M

4.1 RF Output Power

Α.	Condition	Mode	Frequency (MHz)	Antenna	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Verdict
		BLE 2M	2402	Ant1	-6.38	154	-5.12	20	Pass
	NVNT	BLE 2M	2440	Ant1	-7.01	157	-5.75	20	Pass
	NVNT	BLE 2M	2480	Ant1	-7.19	156	-5.93	20	Pass
ļ	NVLT	BLE 2M	2402	Ant1	-6.39	154	-5.13	20	Pass
	NVLT	BLE 2M	2440	Ant1	-7.08	157	-5.82	20	Pass
	NVLT	BLE 2M	2480	Ant1	-7.35	156	-6.09	20	Pass
	NVHT	BLE 2M	2402	Ant1	-6.42	154	-5.16	20	Pass
	NVHT	BLE 2M	2440	Ant1	-7.17	157	-5.91	20	Pass
	NVHT	BLE 2M	2480	Ant1	-7.43	156	-6.17	20	Pass

Report No.: S23051103003002





4.2 Power Spectral Density

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	-6.36	10	Pass
NVNT	BLE 2M	2440	Ant1	-7.07	10	Pass
NVNT	BLE 2M	2480	Ant1	-7.18	10	Pass

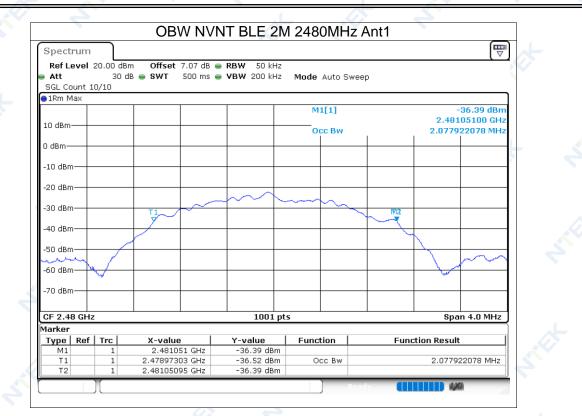
Report No.: S23051103003002

Page 67 of 79

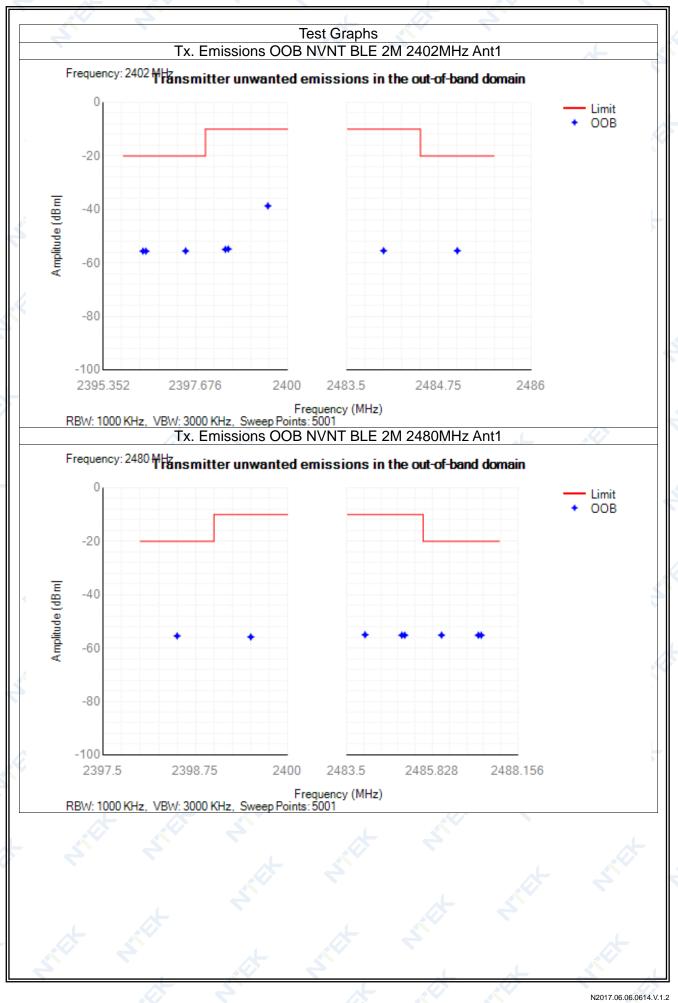
Report No.: S23051103003002

4.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	Center Frequency (MHz)	OBW (MHz)	Lower Edge (MHz)	Upper Edge (MHz)	Limit OBW (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	2402.018	2.074	2400.981	2403.055	2400 - 2483.5MHz	Pass
NVNT	BLE 2M	2440	Ant1	2440.014	2.074	2438.977	2441.051	2400 - 2483.5MHz	Pass
NVNT	BLE 2M	2480	Ant1	2480.012	2.078	2478.973	2481.051	2400 - 2483.5MHz	Pass


Page 68 of 79

Report No.: S23051103003002

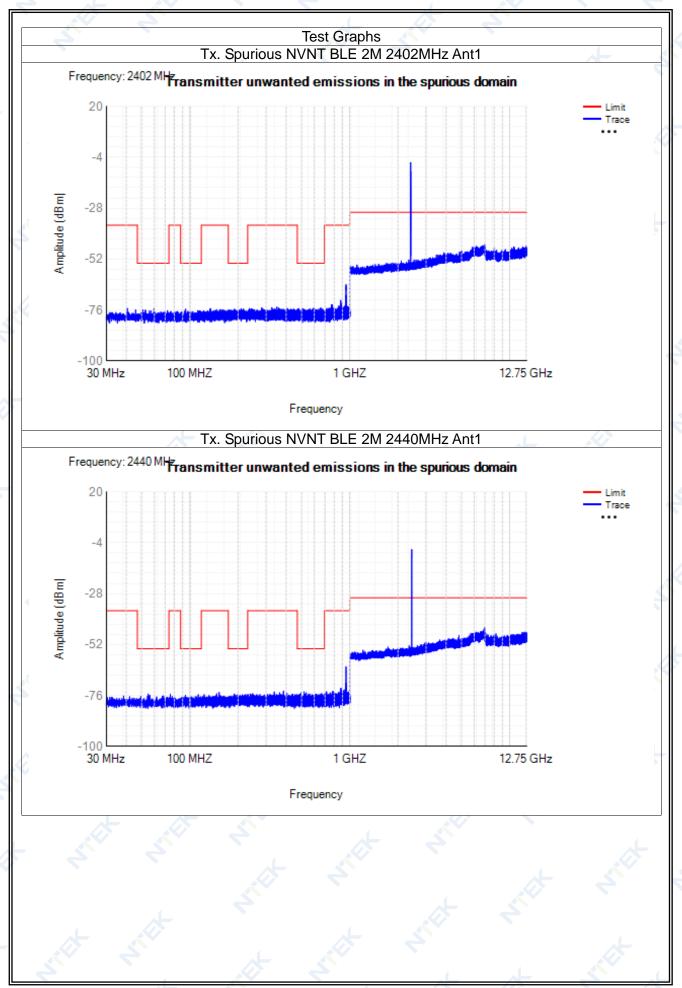


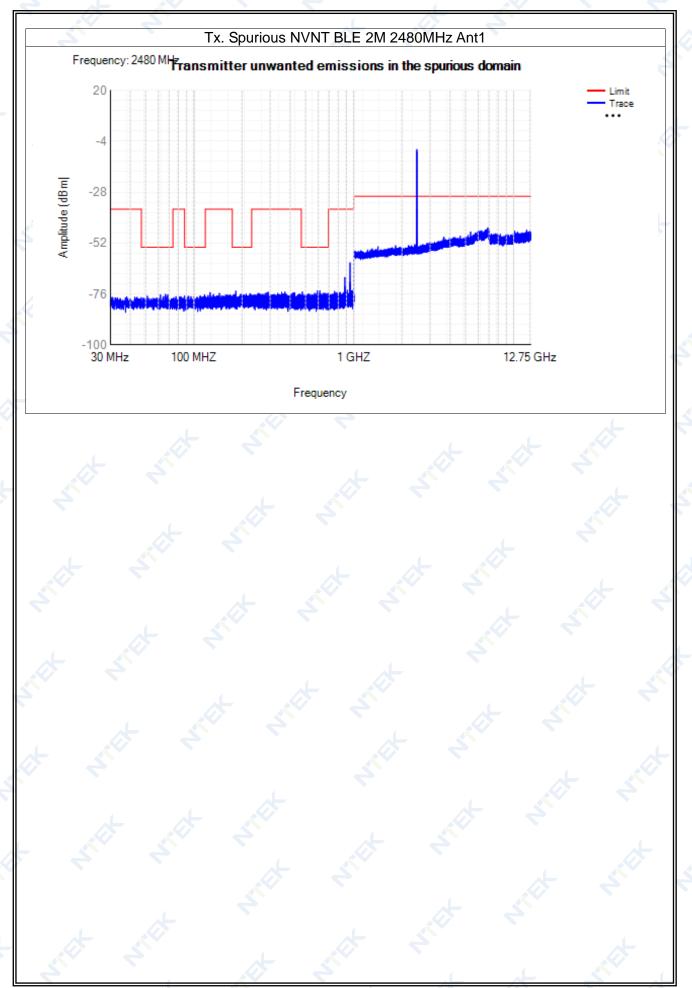
Page 69 of 79

Report No.: S23051103003002

Condition	Mode	Frequency (MHz)	Antenna	OOB Frequency (MHz)	Level (dBm/MHz)	Limit (dBm/MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	2399.5	-38.71	-10	Pass
NVNT	BLE 2M	2402	Ant1	2398.5	-54.81	-10	Pass
NVNT	BLE 2M	2402	Ant1	2398.426	-54.96	-10	Pass
NVNT	BLE 2M	2402	Ant1	2397.426	-55.54	-20	Pass
NVNT	BLE 2M	2402	Ant1	2396.426	-55.61	-20	Pass
NVNT	BLE 2M	2402	Ant1	2396.352	-55.6	-20	Pass
	BLE 2M	2402	Ant1	2484	-55.45	-10	Pass
NVNT	BLE 2M	2402	Ant1	2485	-55.46	-20	Pass
NVNT	BLE 2M	2480	Ant1	2399.5	-55.82	-10	Pass
NVNT	BLE 2M	2480	Ant1	2398.5	-55.45	-20	Pass
NVNT	BLE 2M	2480	Ant1	2484	-55.02	-10	Pass
NVNT	BLE 2M	2480	Ant1	2485	-55.18	-10	Pass
NVNT	BLE 2M	2480	Ant1	2485.078	-55.17	-10	Pass
NVNT	BLE 2M	2480	Ant1	2486.078	-55.15	-20	Pass
NVNT	BLE 2M	2480	Ant1	2487.078	-55.19	-20	Pass
NVNT	BLE 2M	2480	Ant1	2487.156	-55.18	-20	Pass

Page 72 of 79

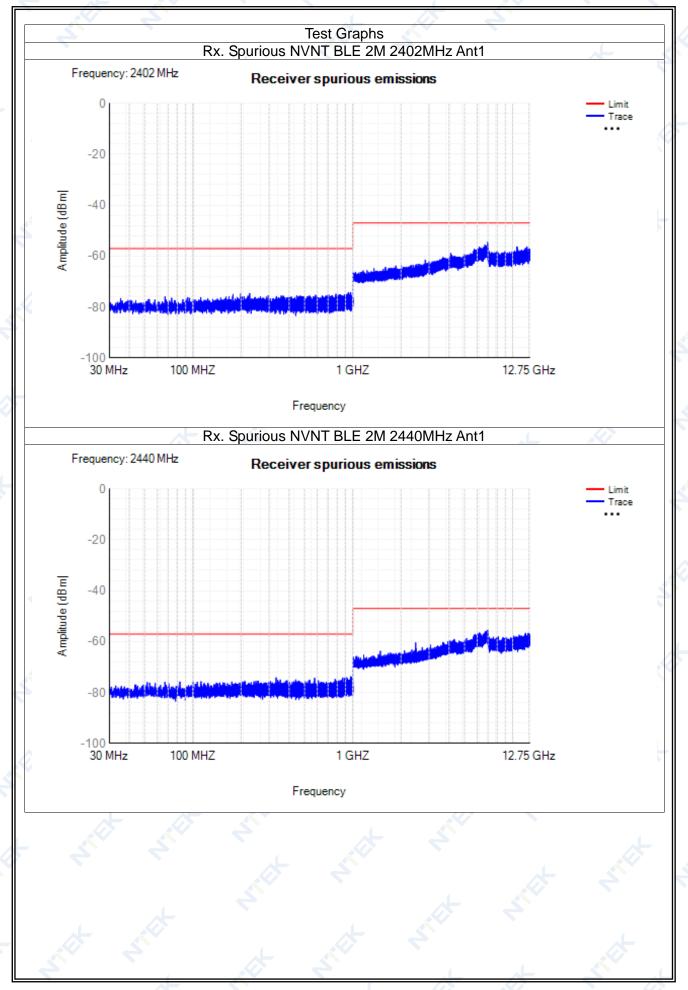

Report No.: S23051103003002

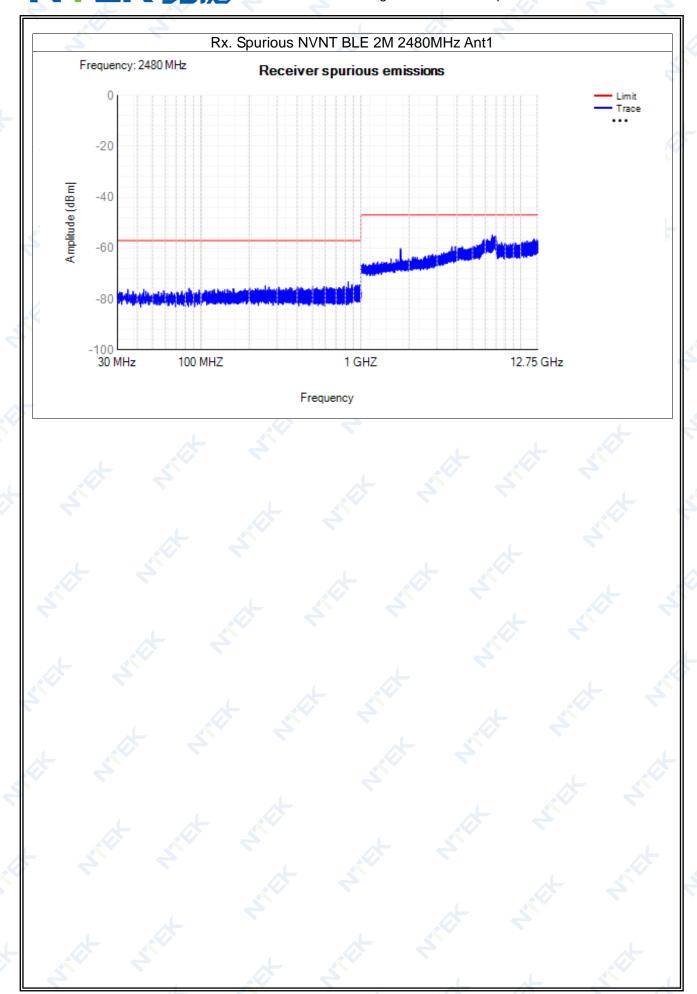

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdic
NVNT	BLE 2M	2402	Ant1	30 -47	40.65	-75.22	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	47 -74	59.60	-75.30	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	74 -87.5	76.10	-76.65	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	87.5 -118	94.10	-75.55	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	> 118 -174	134.40	-75.24	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	174 -230	209.20	-75.34	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	230 -470	350.35	-74.57	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	470 -694	656.80	-74.90	NA	-54	Pass
NVNT	BLE 2M	2402	Ant1	694 -1000	948.25	-64.00	NA	-36	Pass
NVNT	BLE 2M	2402	Ant1	1000 -2396	2338.50	-52.36	NA	-30	Pass
NVNT	BLE 2M	2402	Ant1	2487.5 -12750	6994.50	-45.16	NA	-30	Pass
NVNT	BLE 2M	2440	Ant1	30 -47	38.50	-76.21	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	47 -74	54.85	-75.25	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	74 -87.5	75.45	-75.34	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	87.5 -118	112.85	-75.56	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	118 -174	152.35	-74.43	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	174 -230	189.65	-75.26	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	230 -470	385.20	-73.86	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	470 -694	517.20	-74.20	NA	-54	Pass
NVNT	BLE 2M	2440	Ant1	694 -1000	948.20	-62.40	NA	-36	Pass
NVNT	BLE 2M	2440	Ant1	1000 -2396	2348.50	-52.56	NA	-30	Pass
NVNT	BLE 2M	2440	Ant1	2487.5 -12750	6963.00	-43.86	NA	-30	Pass
NVNT	BLE 2M	2480	Ant1	30 -47	38.10	-77.29	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	47 -74	66.35	-76.12	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	74 -87.5	87.45	-76.86	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	87.5 -118	116.75	-76.28	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	118 -174	126.30	-75.24	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	174 -230	183.00	-74.55	NA	-54	Pass

Page 73 of 79

	- A								
NVNT	BLE 2M	2480	Ant1	230 -470	371.10	-75.01	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	470 -694	612.50	-74.43	NA	-54	Pass
NVNT	BLE 2M	2480	Ant1	694 -1000	948.25	-61.26	NA	-36	Pass
NVNT	BLE 2M	2480	Ant1	1000 -2396	2197.00	-53.14	NA	-30	Pass
NVNT	BLE 2M	2480	Ant1	2487.5 -12750	6873.50	-44.78	NA	-30	Pass

Report No.: S23051103003002

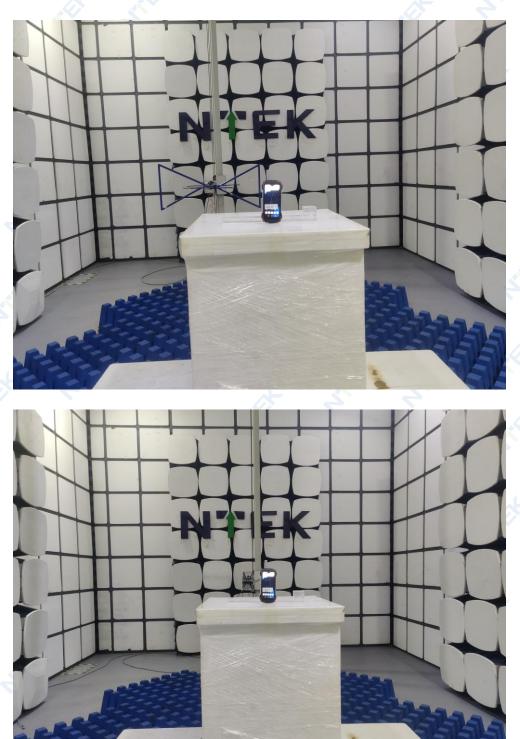



Report No.: S23051103003002

4.6 Receiver spurious emissions

Condition	Mode	Frequency (MHz)	Antenna	Range (MHz)	Spur Freq (MHz)	Peak (dBm)	RMS (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	30 -1000	938.45	-74.23	NA	-57	Pass
NVNT	BLE 2M	2402	Ant1	1000 -12750	6961.5	-54.38	NA	-47	Pass
NVNT	BLE 2M	2440	Ant1	30 -1000	969.6	-73.73	NA	-57	Pass
NVNT	BLE 2M	2440	Ant1	1000 -12750	6966.5	-55.51	NA	-47	Pass
NVNT	BLE 2M	2480	Ant1	30 -1000	836.25	-73.19	NA	-57	Pass
NVNT	BLE 2M	2480	Ant1	1000 -12750	6628	-54.80	NA	-47	Pass

Report No.: S23051103003002



Page 79 of 79 Report No.: S23051103003002

5. EUT TEST PHOTO

SPURIOUS EMISSIONS MEASUREMENT PHOTOS

END OF REPORT