

VERIFICATION OF COMPLIANCE

This Verification of Compliance is hereby issued to the product designated below.

Product Switching Power Supply

Model 850 B5

Data Applies To N/A

Brand

EVGA.

Applicant EVGA Corporation

18F., No.176, Jian 1st Rd., Zhonghe Dist., New Taipei City 235,

Taiwan

Manufacturer EVGA Corporation

18F., No.176, Jian 1st Rd., Zhonghe Dist., New Taipei City 235,

Taiwan

Applicable Standard(s)

EN 55032: 2012+AC: 2013, Class B

EN 61000-3-2: 2014; EN 61000-3-3: 2013

EN 55024: 2010

IEC 61000-4-2: 2008; IEC 61000-4-3: 2006+A1: 2007+A2: 2010

IEC 61000-4-4: 2012; IEC 61000-4-5: 2014+A1: 2017 IEC 61000-4-6: 2013+C1: 2015; IEC 61000-4-8: 2009

IEC 61000-4-11: 2004+A1: 2017

Reference No. T200109N08-E

Test Laboratory Compliance Certification Services Inc.

Tainan Laboratory

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

http://www.ccsrf.com

This device has been tested and found to comply with the stated standard, which is required by the Council Directive of 2014/30/EU. The test results are indicated in the test report and are applicable only to the tested sample identified in the report.

Eric Huang / Section Manager

Tainan Lab

Date: February 10, 2020

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 1 / 72 Rev.: 00

CE EMC TEST REPORT

for

Switching Power Supply

Model: 850 B5

Data Applies To: N/A

Brand: EVGA.

Test Report Number: T200109N08-E

Issued to:

EVGA Corporation

18F., No.176, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan

Issued by:

Compliance Certification Services Inc.

Tainan Laboratory

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

TEL: 886-6-5802201

FAX: 886-6-5802202

Issued Date: February 10, 2020

Note: This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, NIST or any government agencies.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not experted parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 72 Rev.: 00

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	February 10, 2020	Initial Issue	ALL	Polly Wang

Page: 3 / 72 Rev.: 00

TABLE OF CONTENTS

1	TEST CERTIFICATION	4
2	TEST RESULT SUMMARY	5
3	EUT DESCRIPTION	6
4	TEST METHODOLOGY	7
	4.1. DECISION OF FINAL TEST MODE	
_	SETUP OF EQUIPMENT UNDER TEST	
5		_
	5.1. DESCRIPTION OF SUPPORT UNITS	
_		_
6		
	6.1. FACILITIES	_
	6.2. ACCREDITATIONS	
7	' EMISSION TEST	
1		
	7.1. CONDUCTED EMISSION MEASUREMENT	
	7.2. CONDUCTED EMISSION MEASUREMENT AT ANALOGUE/DIGITAL DATA PORTS 7.3. RADIATED EMISSION MEASUREMENT	
	7.4. HARMONICS CURRENT MEASUREMENT	
	7.5. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	
8	IMMUNITY TEST	41
	8.1. GENERAL DESCRIPTION	41
	8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION	.42
	8.3. ELECTROSTATIC DISCHARGE (ESD)	
	8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	
	8.5. ELECTRICAL FAST TRANSIENT (EFT)	
	8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	
	8.8. POWER FREQUENCY MAGNETIC FIELD	
	8.9. VOLTAGE DIPS & VOLTAGE INTERRUPTIONS	
9	PHOTOGRAPHS OF THE TEST CONFIGURATION	66

Page: 4 / 72 Rev.: 00

1 TEST CERTIFICATION

Product: Switching Power Supply

Model: 850 B5

Data Applies To: N/A

Brand:

Applicant: EVGA Corporation

18F., No.176, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan

Manufacturer: EVGA Corporation

18F., No.176, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan

Tested: January 13, 2020 ~ February 03, 2020

Applicable EN 55032: 2012+AC: 2013, EN 55024: 2010 IEC 61000-4-2: 2008

EN 61000-3-2: 2014 IEC 61000-4-3: 2006+A1: 2007+A2: 2010

EN 61000-3-3: 2013 IEC 61000-4-4: 2012

IEC 61000-4-5: 2014+A1: 2017 IEC 61000-4-6: 2013+C1: 2015

IEC 61000-4-8: 2009

IEC 61000-4-11: 2004+A1: 2017

Deviation from Applicable Standard

None

Statements of Conformity

Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements of technical standards specified above under the EMC Directive 2014/30/EU. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Reviewed by:

Eric Huang

Section Manager

John Chen

Supervisor

Page: 5 / 72 Rev.: 00

2 TEST RESULT SUMMARY

EMISSION						
Standard	Item	Result	Remarks			
	Conducted (Power Port)	PASS	Meet Class B limit			
EN 55032: 2012+AC: 2013	Conducted (Analogue/Digital Data Ports)	I N/A I No Requir				
	Radiated (Below 1GHz)	PASS	Meet Class B limit			
	Radiated (Above 1GHz)	N/A	No Requirement			
EN 61000-3-2: 2014	Harmonic current emissions	PASS	Meet the requirement			
EN 61000-3-3: 2013	Voltage fluctuations & flicker	PASS	Meet the requirement			

IMMUNITY [EN 55024: 2010]					
Standard	Item	Result	Remarks		
IEC 61000-4-2: 2008	ESD	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-3: 2006+A1: 2007+A2: 2010	RS	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-4: 2012	EFT	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-5: 2014+A1: 2017	Surge	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-6: 2013+C1: 2015	CS	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-8: 2009	PFMF	PASS	Meets the requirements of Performance Criterion A		
IEC 61000-4-11: 2004+A1: 2017	Voltage dips & voltage variations	PASS	Meets the requirements of Voltage Dips: 1) >95% reduction Performance Criterion A 2) 30% reduction Performance Criterion A Voltage Interruptions: 1) >95% reduction Performance Criterion B		

Note:

- 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.
- 2. The information of measurement uncertainty is available upon the customer's request.

Page: 6 / 72 Rev.: 00

3 EUT DESCRIPTION

Product	Switching Power Supply
Model	850 B5
Data Applies To	N/A
Brand Name	EVGA.
Applicant	EVGA Corporation
Manufacture	EVGA Corporation
Housing material	Plastic with metal plate
Identify Number	T200109N08
Received Date	January 09, 2020
Reported Date	February 06, 2020
EUT Power Rating	100V-240Vac, 10A-5A, 60/50Hz
EUT Size (L*W*H)	15*15*8.6 (cm)

Note:

- 1. Client consigns 1 model sample(s) to test (Model Number: **850 B5**). Therefore, the testing Lab. Just guarantees the unit, which has been tested.
- 2. For more details, please refer to the User's manual of the EUT.

Page: 7 / 72 Rev.: 00

4 TEST METHODOLOGY

4.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The test configuration/ modes are as the following:

Conduction (Power port) Modes:
1. Full Load
Conduction (Analogue/Digital Data Ports) Modes:
1. N/A
Radiation (Below 1GHz) Modes: 1. Full Load
Radiation (Above 1GHz) Modes:
1. N/A
Immunity Mode: Full Load
1. Full Load

4.2. EUT SYSTEM OPERATION

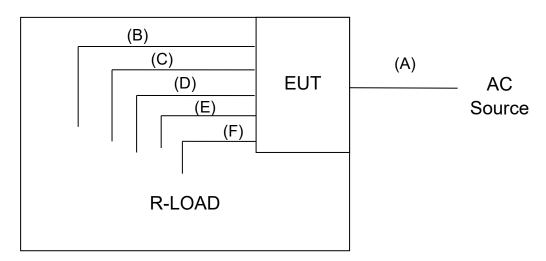
- 1. Setup a whole system for test as shown on setup diagram.
- 2. Turn on power and check function.
- 3. Start to test by test mode.

Page: 8 / 72 Rev.: 00

5 SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	R-Load	N/A	N/A	N/A	N/A

No.	Signal cable description				
Α	AC Cable	Unshielded, 1.4m, 1pcs.			
В	MB	Unshielded, 0.6m, 1pcs.			
С	CPU	Unshielded, 0.6m, 2pcs.			
D	SATA	Unshielded, 0.7m, 3pcs.			
Е	PERIF	Unshielded, 0.7m, 1pcs.			
F	VGA	Unshielded, 0.7m, 3pcs.			

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

Report No.: T200109N08-E Page: 9 / 72
Rev.: 00

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCS Taiwan Tainan Laboratory at

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada
Germany TUV NORD
Taiwan BSMI
USA FCC
Japan VCCI

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

Page: 10 / 72 Rev.: **Report No.:** T200109N08-E

00

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty
Power Line Cond	ucted Emission	9kHz~30MHz	±1.6dB
Conduction En	nission (ISN)	150kHz~30MHz	±1.4dB
Clan	np	30 MHz~300MHz	±2.1dB
	Test Site : OATS-5	30 MHz ~200 MHz	±3.4dB
	Test Site . OATS-5	200 MHz ~1000 MHz	±3.0dB
Radiated Emission	Test Site : OATS-6	30 MHz ~200 MHz	±3.1dB
(10m)		200 MHz ~1000 MHz	±2.2dB
	Test Site : OATS-7	30 MHz ~200 MHz	±3.3dB
		200 MHz ~1000 MHz	±3.2dB
	Test Site : OATS-5	30 MHz ~200 MHz	±3.4dB
	lest Site . OATS-5	200 MHz ~1000 MHz	±2.6dB
Dadieted Fesiesien	Test Site : OATS-6	30 MHz ~200 MHz	±3.4dB
Radiated Emission (3m)	lest site . OATS-0	200 MHz ~1000 MHz	±3.2dB
(5111)	Test Site : OATS-7	30 MHz ~200 MHz	±3.5dB
	lest site . UATS-7	200 MHz ~1000 MHz	±3.3dB
	Chamber 966	1000Mhz~6000MHz	±2.7dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page: 11 / 72 Rev.: 00

7 EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. LIMITS

EDECLIENCY (MILE)	Class A (dBuV)		Class B (dBuV)	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

	Conducted Emission room #1							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
BNC Coaxial Cable	ccs	BNC50	11	01/21/2021				
EMI Test Receiver	R&S	ESCS 30	100348	02/18/2020				
LISN	SCHWARZBECK	NNLK8130	8130124	01/16/2021				
LISN	FCC	FCC-LISN-50 -32-2	08009	06/11/2020				
Pulse Limiter	R&S	ESH3-Z2	100116	01/21/2021				
Test S/W	Test S/W e3(6.101222)							

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

Page: 12 / 72

Report No.: T200109N08-E

Rev.: 00

7.1.3. TEST PROCEDURES

Procedure of Preliminary Test

The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55032 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.

All I/O cables were positioned to simulate typical actual usage as per EN 55032.

The test equipment EUT installed received main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.

All support equipment power received from a second LISN.

The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in Item 4.1 were scanned during the preliminary test.

After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.

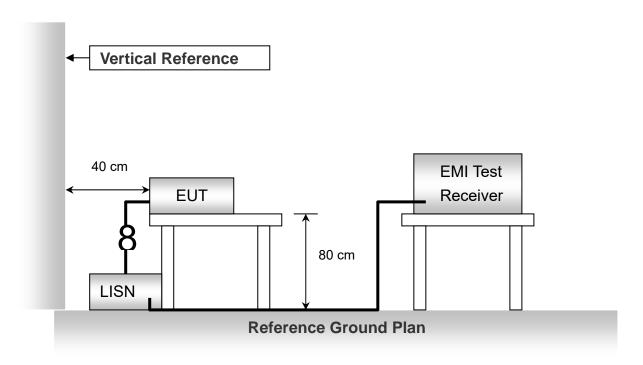
The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.



 Report No.:
 T200109N08-E

 Page:
 13 / 72

 Rev.:
 00

7.1.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

Freq. (MHz)	LISN Factor (dB)	Cable Loss (dB)	Meter Reading (dBuV)	Measured Level (dBuV)	Limits (dBuV)	Over Limits (dBuV)	Detector
X.XX	9.6	0.1	15.7	25.4	46	-20.6	QP

Freq. = Emission frequency in MHz

Reading = Uncorrected Analyzer/Receiver reading

C.F = LISN Factor + Cable Loss

LISN Factor = Insertion loss of LISN and Pulse Limiter
Cable Loss = Cable's loss (LISN to EMI Tester Receiver)

Limit = Limit stated in standard
Over Limit = Measured Level - Limits

Detector : Peak/PK = Peak Reading

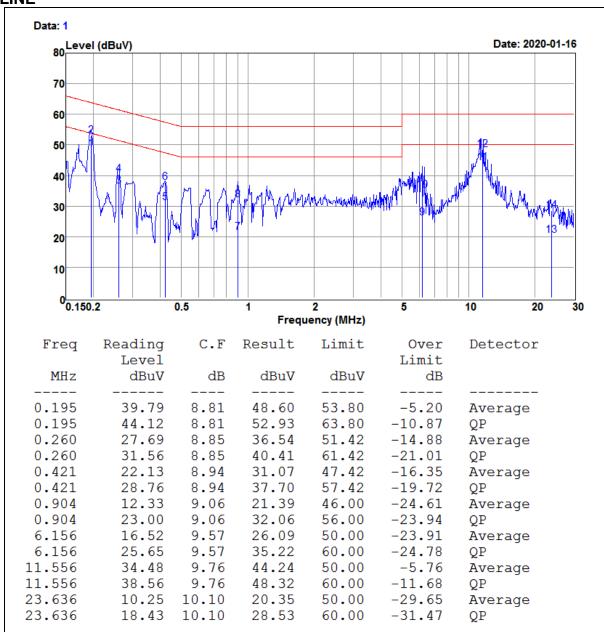
QP = Quasi-peak Reading AV = Average Reading

Calculation Formula

- 1. Result (dBuV) = C.F (dB) + Reading Level (dBuV)
- 2. Over Limit (dBuV) = Measured Level (dBuV) Limits (dBuV)

7.1.6. TEST RESULTS

Test Voltage: AC110V, 60Hz

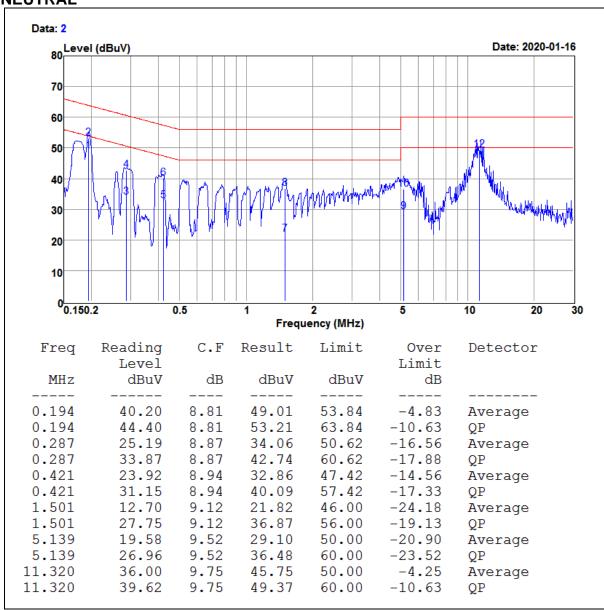

Model No.	850 B5	Test Mode	Full Load
Environmental Conditions	1/4 X (* hh% RH	Resolution Bandwidth	9 kHz
Tested by	Leo Wang		

Page: 14 / 72

00

Rev.:

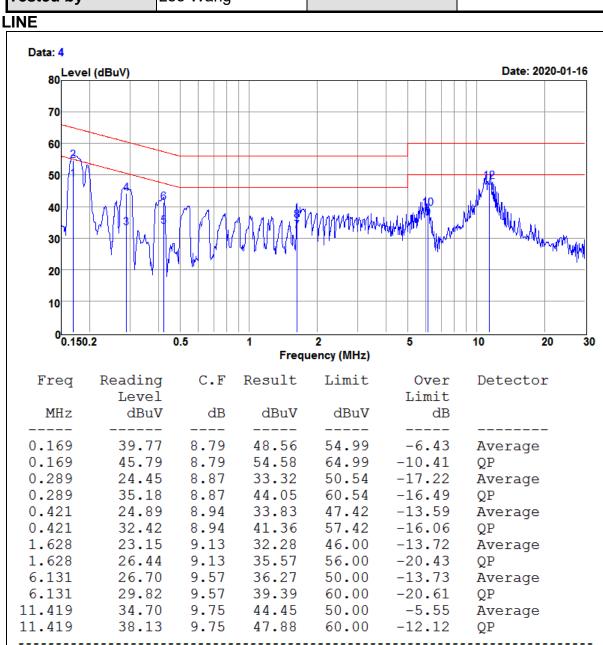
LINE



Page: 15 / 72 Rev.: 00

Model No.	850 B5	Test Mode	Full Load
Environmental Conditions	124 8 () hh% RH	Resolution Bandwidth	9 kHz
Tested by	Leo Wang		

NEUTRAL

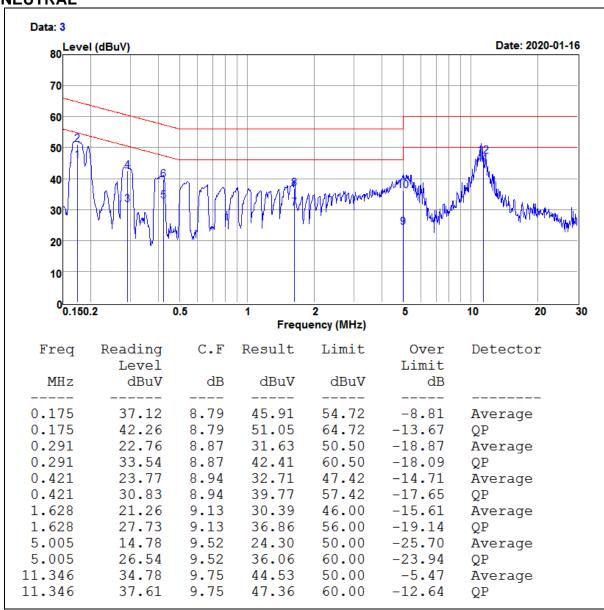


 Report No.:
 T200109N08-E
 Page: 16 / 72

 Rev.:
 00

Test Voltage: AC230V, 50Hz

Model No.	850 B5	Test Mode	Full Load
Environmental Conditions	1/4 8 (* hh% RH	Resolution Bandwidth	9 kHz
Tested by	Leo Wang		



Page: 17 / 72 Rev.: 00

Model No.	850 B5	Test Mode	Full Load
Environmental Conditions	124 8 () hh% RH	Resolution Bandwidth	9 kHz
Tested by	Leo Wang		

NEUTRAL

Page: 18 / 72

Report No.: T200109N08-E

Rev.: 00

7.2. CONDUCTED EMISSION MEASUREMENT AT ANALOGUE/DIGITAL DATA PORTS

7.2.1. LIMITS

For Class A Equipment

EDECLIENCY (MU-)	Voltage Limit (dBuV)		Current Limit (dBuA)	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 ~ 0.5	97 ~ 87	84 ~ 74	53 ~ 43	40 ~ 30
0.5 ~ 30.0	87	74	43	30

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

For Class B Equipment

EDECLIENCY (MU-)	Voltage Limit (dBuV) Quasi-peak Average		Current L	imit (dBuA)
FREQUENCY (MHz)			Quasi-peak	Average
0.15 - 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20
0.5 - 30.0	74	64	30	20

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

7.2.2. TEST INSTRUMENTS

Conducted Emission room # 1							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
BNC Coaxial Cable	ccs	BNC50	11	01/21/2021			
EMI Test Receiver	R&S	ESCS 30	100348	02/18/2020			
FOUR BALACED PAIR ISN	FCC	F-071115-1057-1-09	111130	12/10/2020			
LISN	SCHWARZBECK	NNLK8130	8130124	01/16/2021			
LISN	Schwarzbeck	NSLK 8127	8127526	05/07/2020			
Pulse Limiter	R&S	ESH3-Z2	100116	01/21/2021			
Software	e3(6.101222)						

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R = No Calibration Required.

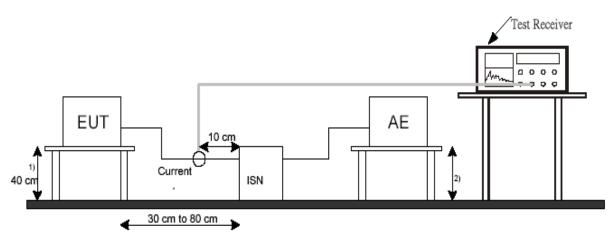
Page: 19 / 72

Report No.: T200109N08-E

Rev.: 00

7.2.3. TEST PROCEDURE

Selecting ISN for unscreened cable or a current probe for screened cable to take measurement.


The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.

Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

In case of measuring on the screened cable, the current limit shall be applied; otherwise the voltage limit should be applied.

7.2.4. TEST SETUP

- 1) Distance to the ground reference plane (vertical or horizontal).
- 2) Distance to the ground reference plane is not critical.

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Page: 20 / 72

Report No.: T200109N08-E

Rev.: 00

7.2.5. DATA SAMPLE

Freq. (MHz)	LISN Factor (dB)	Cable Loss (dB)	Meter Reading ()dBuV	Measured Level (dBuV)	Limits (dBuV)	Over Limits (dBuV)	Detector
X.XX	9.71	0.02	37.17	46.9	66	-19.10	QP

Freq. = Emission frequency in MHz

LISN Factor = Insertion loss of ISN and Pulse Limiter

Cable loss = Insertion loss of Cable (ISN to EMI Tester Receiver)

Meter Reading = Uncorrected Analyzer/Receiver reading

Measured Level = Read Level + Factor
Limit = Limit stated in standard
Over Limit = Reading in reference to limit

Peak = Peak Reading
QP = Quasi-peak Reading
AV = Average Reading

Calculation Formula

Over Limit (dB) = Level (dBuV) – Limit (dBuV)

7.2.6. TEST RESULTS

Note: Not applicable, the EUT doesn't have LAN Port or Modem port.

Page: 21 / 72 Rev.: 00

7.3. RADIATED EMISSION MEASUREMENT

7.3.1. LIMITS

Below 1GHz

EDECHENCY (MIL-)	dBuV/m (At 10m)		
FREQUENCY (MHz)	Class A	Class B	
30 ~ 230	40	30	
230 ~ 1000	47	37	

Note: The lower limit shall apply at the transition frequencies.

Above 1GHz

EDECLIENCY (MH-)	Class A (dBu	ıV/m) (At 3m)	Class B (dBuV/m) (At 3m)		
FREQUENCY (MHz)	Average	Peak	Average	Peak	
1000 ~ 3000	56	76	50	70	
3000 ~ 6000	60	80	54	74	

Note: The lower limit shall apply at the transition frequencies.

According to EN 55032, the measurement frequency range shown in the following table:

Highest frequency generated or used within the EUT	Upper frequency of measurement range
or on which the EUT operates or tunes (MHz)	(MHz)
Less than 108	1000
108-500	2000
500-1000	5000
Above 1000	5 times of the highest frequency or 6GHz,
Above 1000	whichever is less

Page: 22 / 72 Rev.: 00

7.3.2. TEST INSTRUMENTS

Open Area Test Site # 5

Open Area Test Site # 5								
Name of Equipment	Manufacturer	Manufacturer Model Serial Number Calibration Due						
Bi-Log Antenna	Sunol	JB1	A070506-1	09/09/2020				
EMI Test Receiver	R&S	ESCI	101336	05/15/2020				
Type N coxical cable	Suhner	RG_214_U/2X	5	01/21/2021				
Test Software	e3(6.101222)							

Open Area Test Site # 7

Open Area Test Site # 7						
Name of Equipment Manufacturer Model Serial Number Calibration Due						
Bi-Log Antenna	Sunol	JB1	A021306	09/09/2020		
EMI Test Receiver	R&S	ESCI	101336	05/15/2020		
Type N coxical cable	Suhner	RG_214_U/2X	7	02/12/2020		
Software	e3(6.101222)					

☐ Chamber 966 (Above 1GHz)

Chamber 966 (Above 1GHz)					
Name of Equipment Manufacturer Model Serial Number Calibration D					
Cable	Cubpor	SUCOFLEX10	20520/4PEA&O6	01/29/2021	
Cable	Suhner	4PEA	20520/4PEA&O6	01/29/2021	
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	07/17/2020	
Horn Antenna	Com-Power	AH-118	071032	04/29/2020	
Pre-Amplifier	EMCI	EMC012645	980098	01/29/2021	
Software	Excel(ccs-o6-2019 v1.2)				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Required.

Page: 23 / 72

Report No.: T200109N08-E

Rev.: 00

7.3.3. TEST PROCEDURE

Procedure of Preliminary Test

The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.

Support equipment, if needed, was placed as per EN 55032.

All I/O cables were positioned to simulate typical usage as per EN 55032.

The EUT received power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.

The antenna was placed at 10/3 meter away from the EUT as stated in EN 55032. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver quickly scanned from 30MHz to 6000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The test mode(s) described in Item 4.1 were scanned during the preliminary test:

After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.

The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

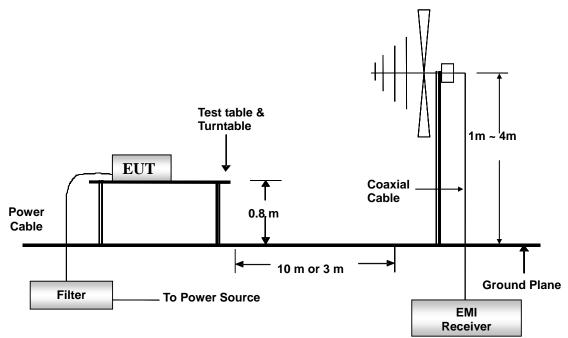
Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

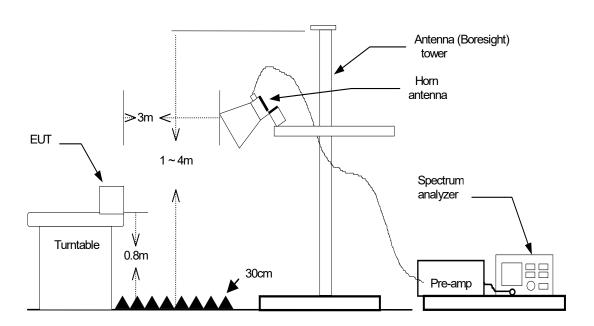
The Analyzer / Receiver scanned from 30MHz to 6000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.

The test data of the worst-case condition(s) was recorded.


Page: 24 / 72

Report No.: T200109N08-E


Rev.: 00

7.3.4. TEST SETUP

Below 1 GHz

Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Page: 25 / 72

Report No.: T200109N08-E

Rev.: 00

7.3.5. DATA SAMPLE

Below 1GHz

Freq. (MHz)	Reading (dBuV/m)	Antenna Factor (dB)	Cable loss (dB)	Measure level (dBuV/m)	Limit (dBu/m)	Over limit (dBuV/m)	Detector
X.XX	24.48	7.33	1.50	33.31	40	-6.69	QP

Freq. = Emission frequency in MHz

Reading = Uncorrected Analyzer/Receiver reading

Antenna Factor = Antenna Factor Cable los = Cable's loss

Measure level = Reading + Antenna Factor + Cable loss

Limit = Limit stated in standard Over limit = Measure level – Limit

Detector: Peak/PK = Peak Reading

QP = Quasi-peak Reading AV = Average Reading

Calculation Formula

Over limit (dBuV/m) = Result (dBuV/m) - Limit (dBuV/m)

Above 1GHz

	Freq.	Reading	AF	C loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
X	XXX. XX	56.00	25.14	2.07	41.77	0.72	42.16	70.00	-27.84	Р

Freq. = Emission frequency in MHz

Reading Level = Uncorrected Analyzer/Receiver reading

C.F = AF + C loss - Pre-amp + Filter

AF = Antenna Factor

C_loss = Insertion loss of cable Pre-amp = Pre-amplifier Gain

Result = Readind+AF+Closs-Pre-amp+Fliter

Limit = Limit stated in standard

Over Limit = Reading in reference to limit

Detector: P = Peak Reading

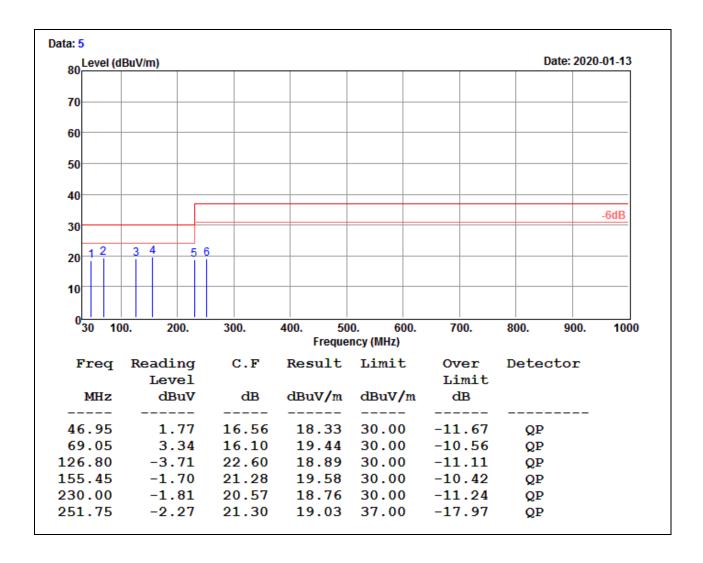
Q= Quasi-peak Reading A = Average Reading

Calculation Formula

Over Limit (dB) =Result (dBuV/m) – Limit (dBuV/m)

Page: 26 / 72

Report No.: T200109N08-E

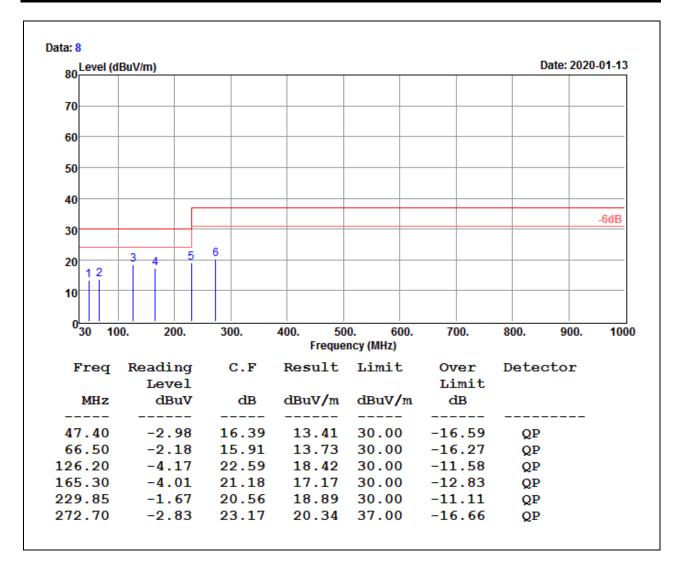

Rev.: 00

7.3.6. TEST RESULTS

Below 1GHz

Test Voltage: AC110V, 60Hz

Model No.	850 B5	Test Mode	Full Load		
Environmental Conditions	1/h 1 (5.5% RH	Resolution Bandwidth	120 kHz		
Antenna Pole	Vertical	Antenna Distance	10m		
Detector Function	Quasi-peak.	Tested by	Peter Chu		

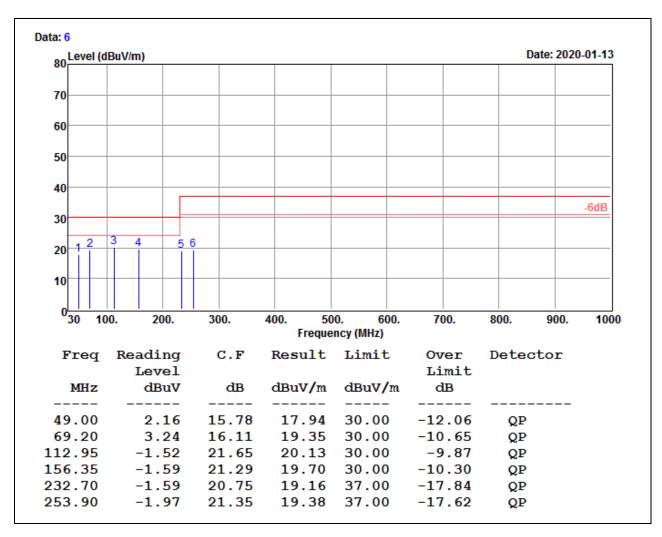

REMARKS: 1.QP= Quasi-peak Reading.

2. The other emission levels were very low against the limit.

Page: 27 / 72 Rev.: 00

Model No.	850 B5	Test Mode	Full Load
Environmental Conditions	126 1 (* 53% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested by	Peter Chu

REMARKS: 1.QP= Quasi-peak Reading.

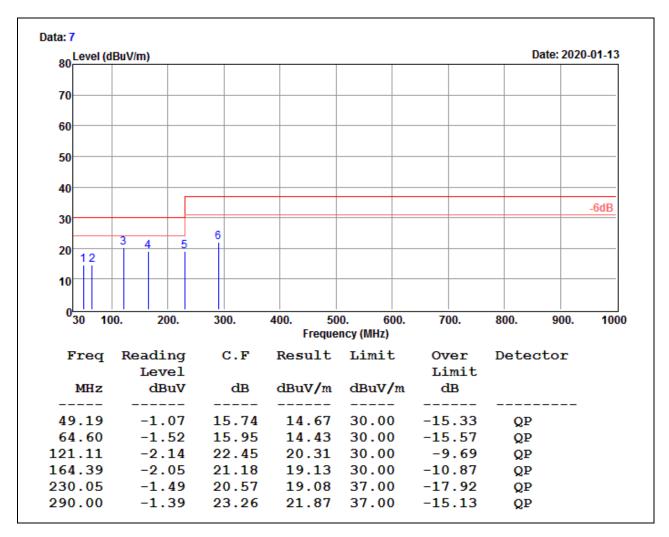

2. The other emission levels were very low against the limit.

Page: 28 / 72 Rev.: 00

Test Voltage: AC230V, 50Hz

Model No.	850 B5	Test Mode	Full Load
Environmental Conditions	26.1℃, 53% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Peter Chu

REMARKS: 1.QP= Quasi-peak Reading.


2. The other emission levels were very low against the limit.

 Report No.:
 T200109N08-E
 Page: 29 / 72

 Rev.:
 00

Model No.	850 B5	Test Mode	Full Load
Environmental Conditions	26.1℃, 53% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested by	Peter Chu

REMARKS: 1.QP= Quasi-peak Reading.

2. The other emission levels were very low against the limit.

Above 1GHz

Not applicable, since the highest frequency of the internal sources of the EUT is less than 108MHz, the measurement shall only be made up to 1 GHz.

Page: 30 / 72 Rev.: 00

7.4. HARMONICS CURRENT MEASUREMENT

7.4.1. LIMITS OF HARMONICS CURRENT MEASUREMENT

Limits for	Class A equipment		
Harmonics Order	Max. permissible harmonics current		
n	<u> </u>		
Odd harmonics			
3	2.30		
5 1.14			
7	0.77		
9	0.40		
11	0.33		
13	0.21		
15<=n<=39	0.15x15/n		
Eve	en harmonics		
2	1.08		
4	0.43		
6	0.30		
8<=n<=40	0.23x8/n		

Limits for Class D equipment						
Harmonics Order n Max. permissible harmonics current per watt mA/W		Max. permissible harmonics current A				
	Odd Harmonics only					
3	3.4	2.30				
5	1.9	1.14				
7	1.0	0.77				
9	0.5	0.40				
11	0.35	0.33				
13	0.30	0.21				
15<=n<=39	3.85/n	0.15x15/n				

Note:

- 1. Class A and Class D are classified according to item 7.4.3.
- 2. According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

7.4.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Harmonic & Flicker Test System	Teseq	NSG 1007/CCN 1000-1	1504A02655	03/24/2020	
Software	Win2100V4 V4.14.0				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

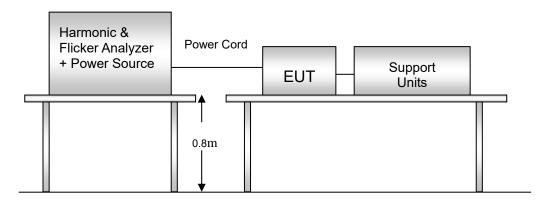
Page: 31 / 72

Report No.: T200109N08-E

Rev.: 00

7.4.3. TEST PROCEDURE

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.


The classification of EUT is according to section 5 of EN 61000-3-2.

The EUT is classified as follows:

- Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
- Class B: Portable tools; Arc welding equipment which is not professional equipment.
- Class C: Lighting equipment.
- Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.

The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

7.4.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.4.5. TEST RESULTS

Test Model: 850 B5

	20℃, 52% RH, 1019 mbar	Test Results	Pass
Tested By	John Chen	Limits	Class ⊠A □B □C □D

NOTE: 1. Limits classified according to item 7.3.3

2. According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

Page: 32 / 72

00

Rev.:

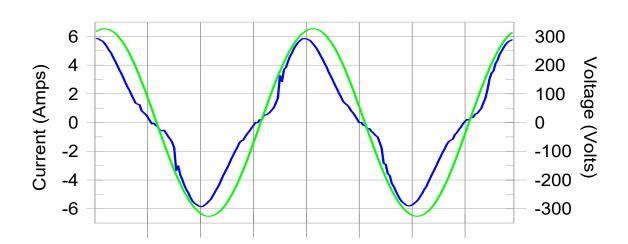
Test Result

Harmonics - Class-D per Ed. Ed. 5.0 (2018)(Run time)

EUT: 850 B5 Tested by: John Chen

Test category: Class-D per Ed. 5.0 (2018) (European limits) Test Margin: 100

Test date: 2020/1/30 Start time: P.M. 04:05:46 End time: P.M. 04:15:58


Test duration (min): 10 Data file name: H-000102.cts data

Comment: Comment

Customer: EVGA Corporation

Test Result: Not Class D Source qualification: Normal


Current & voltage waveforms

Page: 33 / 72 Rev.: 00

Harmonics and Class D limit line European Limits

Test result: Not Class D Worst harmonics H3-17.5% of 150% limit, H3-25.6% of 100% limit

Page: 34 / 72 Rev.: 00

Current Test Result Summary (Run time)

EUT: 850 B5 Tested by: John Chen

Test category: Class-D per Ed. 5.0 (2018) (European limits) Test Margin: 100

Test date: 2020/1/30 Start time: P.M. 04:05:46 End time: P.M. 04:15:58

Test duration (min): 10 Data file name: H-000102.cts_data

Comment: Comment

Customer: EVGA Corporation

Test Result: Not Class D Source qualification: Normal

THC(A): 0.701 I-THD(%): 20.5 POHC(A): 0.038 POHC Limit(A): 0.337

Highest parameter values during test:

 V_RMS (Volts):
 231.08
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 5.893
 I_RMS (Amps):
 3.533

 I_Fund (Amps):
 3.422
 Crest Factor:
 1.682

 Power (Watts):
 783.0
 Power Factor:
 0.970

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.002	0.000	N/A	0.003	0.000	N/A	Not-D
3	0.681	2.662	25.6	0.698	3.993	17.5	Not-D
4	0.001	0.000	N/A	0.001	0.000	N/A	Not-D
5	0.127	1.488	8.5	0.129	2.231	5.8	Not-D
6	0.000	0.000	N/A	0.000	0.000	N/A	Not-D
7	0.071	0.783	9.1	0.079	1.174	6.8	Not-D
8	0.000	0.000	N/A	0.001	0.000	N/A	Not-D
9	0.056	0.391	14.3	0.063	0.587	10.8	Not-D
10	0.000	0.000	N/A	0.000	0.000	N/A	Not-D
11	0.022	0.274	8.0	0.024	0.411	5.8	Not-D
12	0.000	0.000	N/A	0.000	0.000	N/A	Not-D
13	0.026	0.235	11.1	0.033	0.352	9.4	Not-D
14	0.000	0.000	N/A	0.000	0.000	N/A	Not-D
15	0.026	0.204	13.0	0.030	0.305	9.9	Not-D
16	0.000	0.000	N/A	0.000	0.000	N/A	Not-D
17	0.014	0.180	N/A	0.018	0.270	N/A	Not-D
18	0.000	0.000	N/A	0.000	0.000	N/A	Not-D

Page: 35 / 72 Rev.: 00

Report	No.: T20	0109N08-E	Ξ				Rev.:	00
19	0.016	0.159	N/A	0.021	0.238	N/A	Not-D	
20	0.001	0.000	N/A	0.001	0.000	N/A	Not-D	
21	0.009	0.143	N/A	0.010	0.215	N/A	Not-D	
22	0.000	0.000	N/A	0.001	0.000	N/A	Not-D	
23	0.012	0.131	N/A	0.020	0.196	N/A	Not-D	
24	0.000	0.000	N/A	0.001	0.000	N/A	Not-D	
25	0.021	0.121	17.7	0.026	0.181	14.3	Not-D	
26	0.001	0.000	N/A	0.001	0.000	N/A	Not-D	
27	0.013	0.112	N/A	0.015	0.168	N/A	Not-D	
28	0.002	0.000	N/A	0.002	0.000	N/A	Not-D	
29	0.004	0.104	N/A	0.012	0.156	N/A	Not-D	
30	0.001	0.000	N/A	0.001	0.000	N/A	Not-D	
31	0.013	0.097	N/A	0.016	0.146	N/A	Not-D	
32	0.001	0.000	N/A	0.002	0.000	N/A	Not-D	
33	0.008	0.091	N/A	0.010	0.136	N/A	Not-D	
34	0.001	0.000	N/A	0.001	0.000	N/A	Not-D	
35	0.007	0.086	N/A	0.016	0.129	N/A	Not-D	
36	0.000	0.000	N/A	0.001	0.000	N/A	Not-D	
37	0.013	0.081	N/A	0.016	0.122	N/A	Not-D	
38	0.000	0.000	N/A	0.001	0.000	N/A	Not-D	
39	0.009	0.078	N/A	0.011	0.116	N/A	Not-D	
40	0.001	0.000	N/A	0.002	0.000	N/A	Not-D	

Note: Dynamic limits were applied for this test. The highest harmonics values in the above table may not occur at the same window as the maximum harmonics/limit ratio.

Page: 36 / 72 Rev.: 00

Voltage Source Verification Data (Run time)

EUT: 850 B5 Tested by: John Chen

Test category: Class-D per Ed. 5.0 (2018) (European limits) Test Margin: 100

Test date: 2020/1/30 Start time: P.M. 04:05:46 End time: P.M. 04:15:58

Test duration (min): 10 Data file name: H-000102.cts_data

Comment: Comment

Customer: EVGA Corporation

Test Result: Not Class D Source qualification: Normal

Highest parameter values during test:

 Voltage (Vrms):
 231.08
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 5.893
 I_RMS (Amps):
 3.533

 I_Fund (Amps):
 3.422
 Crest Factor:
 1.682

 Power (Watts):
 783.0
 Power Factor:
 0.970

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.039	0.462	8.47	ок
3	0.540	2.079	25.97	ок
4	0.019	0.462	4.06	ОК
5	0.060	0.924	6.50	ОК
6	0.012	0.462	2.67	ок
7	0.043	0.693	6.18	ок
8	0.010	0.462	2.19	ок
9	0.012	0.462	2.65	ок
10	0.008	0.462	1.83	ок
11	0.022	0.231	9.54	ок
12	0.012	0.231	5.39	ок
13	0.024	0.231	10.46	ок
14	0.006	0.231	2.52	ок
15	0.015	0.231	6.43	ок
16	0.007	0.231	2.87	ок
17	0.015	0.231	6.58	ок
18	0.006	0.231	2.69	ок
19	0.018	0.231	7.85	ок

Page: 37 / 72 Rev.: 00

Report No.:	T200109N08-E			
20	0.025	0.231	10.79	ок
21	0.013	0.231	5.67	ок
22	0.006	0.231	2.60	ОК
23	0.023	0.231	10.12	OK
24	0.008	0.231	3.32	OK
25	0.023	0.231	9.85	OK
26	0.007	0.231	2.86	OK
27	0.010	0.231	4.40	OK
28	0.004	0.231	1.89	OK
29	0.016	0.231	6.80	OK
30	0.003	0.231	1.22	OK
31	0.018	0.231	7.80	OK
32	0.002	0.231	0.99	ОК
33	0.015	0.231	6.33	OK
34	0.002	0.231	0.87	OK
35	0.020	0.231	8.85	OK
36	0.003	0.231	1.19	OK
37	0.023	0.231	9.85	OK
38	0.002	0.231	0.99	OK
39	0.019	0.231	8.32	OK
40	0.018	0.231	7.77	ок

Report No.: T200109N08-E Page: 38 / 72

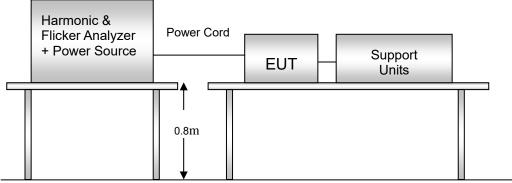
7.5. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

7.5.1. LIMITS OF VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
Plt	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

7.5.2. TEST INSTRUMENTS

IMMUNITY SHIELDED ROOM							
Name of Equipment	ame of Equipment Manufacturer Model Serial Number Calibration D						
Harmonic & Flicker Test System	Teseq	NSG 1007/CCN 1000-1	1504A02655	03/24/2020			
Software	Win2100V4 V4.14.0						


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

7.5.3. TEST PROCEDURE

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.5.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Page: 39 / 72

Rev.: 00

Report No.: T200109N08-E

7.5.5. TEST RESULTS

Test Model: 850 B5

Observation Period (Tp)	10 min	Tested by	John Chen
	24℃ 50% RH,		
Conditions	1025mbar		

Test Result

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)

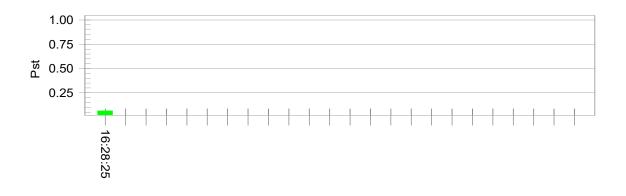
EUT: 850 B5 Tested by: John Chen

Test category: All parameters (European limits)

Test Margin: 100

Test date: 2020/1/30 Start time: P.M. 04:18:04 End time: P.M. 04:28:31

Test duration (min): 10 Data file name: F-000103.cts_data


Comment: Comment

Customer: EVGA Corporation

Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

Page: 40 / 72 Rev.: 00

Parameter values recorded during the test:

Vrms at the end of test (Volt): 229.77

T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064 T	est limit:	1.000	Pass
Highest Plt (2 hr. period):	0.028Test limit:		0.650	Pass

 Report No.:
 T200109N08-E

 Page:
 41 / 72

 Rev.:
 00

8 IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Dreduct Ctandard		EN 55024: 2010
Product Standard	Test Type	Minimum Requirement
	IEC 61000-4-2	Electrostatic Discharge – ESD: 8KV air discharge, 4kV Contact discharge, Performance Criterion B
	IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test - RS: 80 ~1000 MHz, 3V/m, 80% AM(1kHz), Performance Criterion A
Basic Standard, Specification, and Performance Criterion required	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT, AC Power Port: 1kV DC Power Port: 0.5kV Signal Ports and Telecommunication Ports: 0.5kV Performance Criterion B
	IEC 61000-4-5	Surge Immunity Test: 1.2/50 us Open Circuit Voltage, 8/20 us Short Circuit Current, AC Power Port ~ line to line: 1kV,
	IEC 61000-4-6	Conducted Radio Frequency Disturbances Test - CS: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A
	IEC 61000-4-8	Power frequency magnetic field immunity test 50 Hz, 1A/m Performance Criterion A
	IEC 61000-4-11	Voltage Dips: i) >95% reduction for 0.5 periods, Performance Criterion B ii) 30% reduction for 25 periods, Performance Criterion C Voltage Interruptions: >95% reduction for 250 periods Performance Criterion C

 Report No.:
 T200109N08-E

 Page:
 42 / 72

 Rev.:
 00

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
Criteria B:	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page: 43 / 72 Rev.: 00

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-2

Discharge Impedance: 330 ohm / 150 pF

Discharge Voltage: Air Discharge: --- kV (Direct)

Contact Discharge: 2, 4 kV (Direct/Indirect)

Polarity: Positive & Negative

Number of Discharge: Air Discharge: min. 10 times at each test point for each polarity

Contact Discharge: min. 200 times in total

Discharge Mode: Single Discharge 1 second minimum

8.3.2. TEST INSTRUMENT

IMMUNITY SHIELDED ROOM						
Name of Equipment Manufacturer Model Serial Number Calibration I						
ESD Simulator	NoiseKen	ESS-B3011	ESS1478775	07/30/2020		
Software	NO.					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

Page: 44 / 72

Report No.: T200109N08-E

Rev.: 00

8.3.3. TEST PROCEDURE

The discharges shall be applied in two ways:

a) Contact discharges to the conductive surfaces and coupling planes:

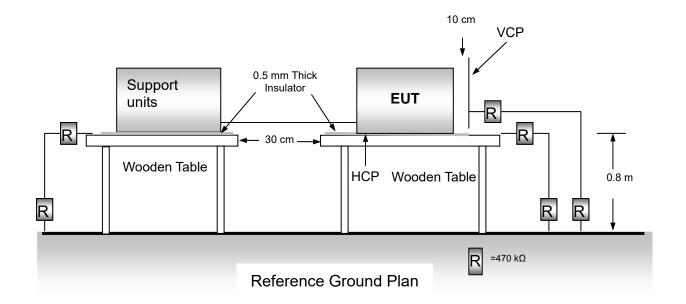
The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b) Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the HCP (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.



Page: 45 / 72

Report No.: T200109N08-E

Rev.: 00

8.3.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **G**round **R**eference **P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A **H**orizontal **C**oupling **P**lane (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with 940kohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

Page: 46 / 72 Rev.: 00

Report No.: T200109N08-E

8.3.5. TEST RESULTS For Model: 850 B5

Temperature	17°C	Humidity	48% RH
Pressure	1018mbar	Tested By	John Chen
Required Passing Performance	Criterion B	Test Mode	Full load

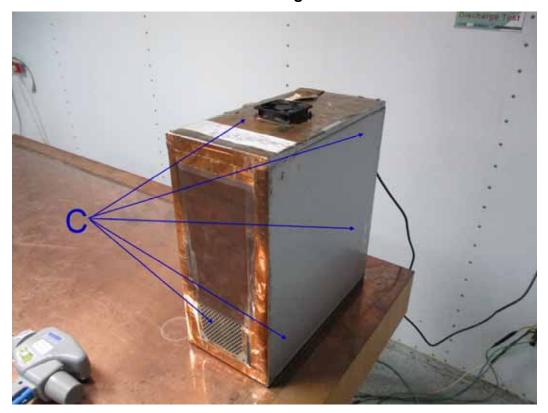
Test Date: 2020/02/03

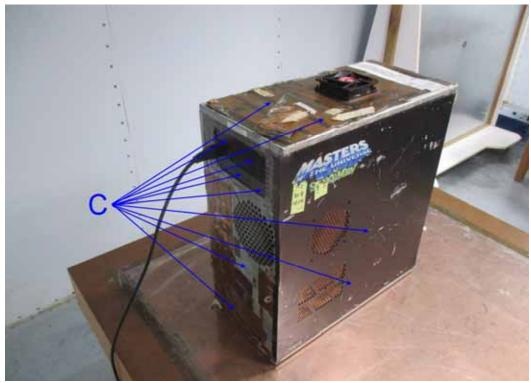
Test Date. 2020/02/05							
Air Discharge							
Test Levels				Results			
Test Points	±2 kV	±4 kV	±8 kV	Pass	Fail	Performance	
				i uco i un		Criterion	
Front						AB	
Back						□A □B	
Left						□ A □ B	
Right						□A □B	
Тор						□А □В	
Bottom						□ A □ B	
Output						□ A □ B	

Contact Discharge							
	Test Levels				Results		
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass	Fail	Performance Criterion	
Front						⊠A □B	
Back				\boxtimes		⊠A □B	
Left		\boxtimes		\boxtimes		⊠A □B	
Right				\boxtimes		⊠A □B	
Тор						⊠A □B	
Bottom						□ A □ B	

Discharge To Horizontal Coupling Plane							
	Test Levels			s Results			
Side of EUT	± 2 kV	± 4 kV	± 8 kV	Pass	Fail	Performance Criterion	
Front				\boxtimes		⊠A □B	
Back		\boxtimes		\boxtimes		⊠A □B	
Left				\boxtimes		⊠A □B	
Right						⊠A □B	

Discharge To Vertical Coupling Plane							
	T	est Level	S			Results	
Side of EUT	± 2 kV	±4 kV	±8 kV	Pass	Fail	Performance	
	KV		O K	. 466		Criterion	
Front				\boxtimes		oxtimesA $oxtimes$ B	
Back		\boxtimes				⊠A □B	
Left				\boxtimes		⊠A □B	
Right						⊠a □b	




 Report No.:
 T200109N08-E

 Page:
 47 / 72

 Rev.:
 00

The Photo for Discharge Points of EUT

'A' Mark — Air Discharged ;'C' Mark — Contact Discharged

Report No.: T200109N08-E Page: 48 / 72 Rev.: 00

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

8.4.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-3

Frequency Range: 80 MHz ~1000 MHz

Field Strength: 3 V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Polarity of Antenna: Horizontal and Vertical

Test Distance: 3 m

Antenna Height: 1.5m

8.4.2. TEST INSTRUMENT

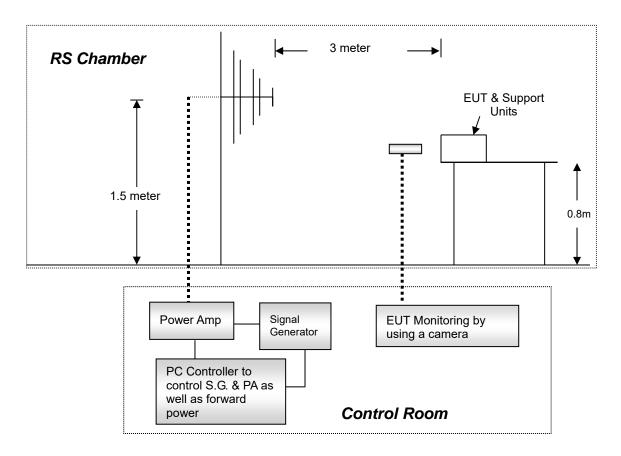
966 RS Chamber						
Name of Equipment	Manufacturer	Manufacturer Model Serial Number		Calibration Due		
Power SENSOR	Boonton	51011-EMC	33428	08/15/2020		
Power SENSOR	Boonton	51011-EMC	33429	08/15/2020		
RS Power Meter	Boonton	4232A-01-02	122202	08/15/2020		
Signal Generator	R&S	SMF 100A	100567	11/17/2020		
Signal Generator	hp	ESG-D3000A	US36260655	08/14/2020		
Amplifier	ar	50S1G6M1	0343693	N.C.R		
Amplifier	TESEQ	CBA 1G-600B	T2499-0619	N.C.R		
Antenna	ar	AT5080	309817	N.C.R		
Software	EMCWARE Ver 3.4.3					

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{2.} N.C.R. = No Calibration required

Page: 49 / 72

Report No.: T200109N08-E


Rev.: 00

8.4.3. TEST PROCEDURE

The test procedure was in accordance with IEC 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

Page: 50 / 72 Rev.: 00

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

8.4.5. TEST RESULTS

For Model: 850 B5

,		Criterion A		
Tested By	John Chen	Test Mode	Full load	
Pressure	1019mbar	Dwell Time	3 sec.	
Temperature	19°C	Humidity	51% RH	

Test Date: 2020/02/03

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion	Result	Observation
80 ~ 1000	V&H	0	3	⊠A □B	PASS	
80 ~ 1000	V&H	90	3	⊠A □B	PASS	
80 ~ 1000	V&H	180	3	⊠A □B	PASS	
80 ~ 1000	V&H	270	3	⊠A □B	PASS	

 Page: 51 / 72

 Report No.:
 T200109N08-E

 Rev.:
 00

8.5. ELECTRICAL FAST TRANSIENT (EFT)

8.5.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-4

Test Voltage: AC Power Port: 1 kV

DC Power Port: --- kV

Signal Ports and Telecommunication Ports: --- kV

Polarity: Positive & Negative

Impulse Frequency: 5 kHz

Impulse Wave-shape: 5/50 ns

Burst Duration: 15 ms

Burst Period: 300 ms

Test Duration: Not less than 1 min.

8.5.2. TEST INSTRUMENT

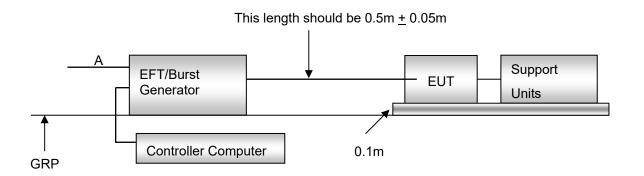
Immunity Shield Room							
Name of Equipment	Name of Equipment Manufacturer Model Serial Number Calibration						
Capactivite Coupling Clamp	EM TEST	HFK	P1504147703	04/02/2020			
Ultra Compact Simulator	EM TEST	UCS 500N7	P1552169754	04/01/2020			
Software	iec.control V5.4.4						

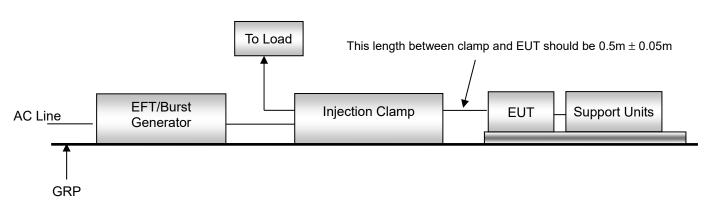
Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration required

8.5.3. TEST PROCEDURE

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter.
- c) The duration time of each test sequential was 1 minute.
- d) The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.




 Report No.:
 T200109N08-E

 Page:
 52 / 72

 Rev.:
 00

8.5.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.1m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

Page: 53 / 72 Rev.: 00

8.5.5. TEST RESULTS

For Model: 850 B5

Temperature	20°C	Humidity	52% RH
Pressure	1019mbar	Tested By	John Chen
Required Passing Performance	Criterion B	Test Mode	Full load

Test Date: 2020/02/03

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L	+/-	1kV	⊠A □B	PASS	
N	+/-	1kV	⊠A □B	PASS	
PE	+/-	1kV	⊠A □B	PASS	
L+N	+/-	1kV	⊠A □B	PASS	
L+PE	+/-	1kV	⊠A □B	PASS	
N+PE	+/-	1kV	⊠A □B	PASS	
L+N+PE	+/-	1kV	⊠A □B	PASS	

Page: 54 / 72

Report No.: T200109N08-E

Rev.: 00

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-5

Wave-Shape: Combination Wave

1.2/50 μs Open Circuit Voltage 8/20 μs Short Circuit Current

Test Voltage: AC Power Port~ line to line: 1kV, line to ground: 2kV

DC Power Port~ line to earth: --- kV

Signal and Telecommunication Ports ~ line to ground: ---kV

Surge Input/Output: AC Power Line: L-N \ L-PE \ N-PE

Generator Source Impedance: 2 ohm between networks

12 ohm between network and ground

Polarity: Positive/Negative

Phase Angle: 0° / 90° / 180° / 270°

Pulse Repetition Rate: 1 time / min. (maximum)

Number of Tests: 5 positive and 5 negative at selected points

8.6.2. TEST INSTRUMENT

Immunity Shield Room							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
CDN	EMC-PAPTNER	CDN-UTP8	1504	05/31/2020			
Ultra Compact Simulator	EM TEST	UCS 500N7	P1552169754	04/01/2020			
Software	iec.control V5.4.4						

Note:

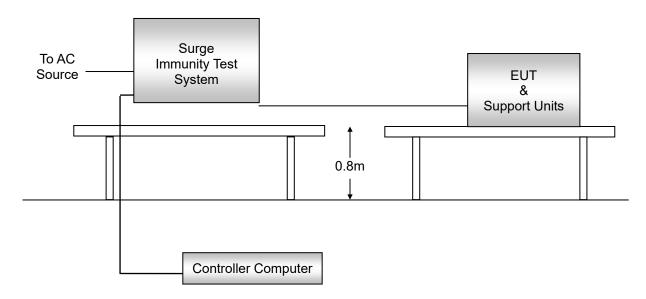
- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R. = No Calibration required

Page: 55 / 72

Report No.: T200109N08-E

Rev.: 00

8.6.3. TEST PROCEDURE


a) For EUT power supply:

The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT: The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

8.6.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

 Report No.:
 T200109N08-E

 Page:
 56 / 72

 Rev.:
 00

8.6.5. TEST RESULTS

For Model: 850 B5

Temperature	20°C	Humidity	52% RH
Pressure	1019mbar	Tested By	John Chen
Required Passing Performance	Criterion B	Test Mode	Full load

Test Date: 2020/02/03

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L - N	+/-	1	⊠A □B	PASS	
L – PE	+/-	2	⊠A □B	PASS	
N - PE	+/-	2	⊠A □B	PASS	

Page: 57 / 72

Report No.: T200109N08-E

Rev.: 00

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

8.7.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-6

Frequency Range: 0.15 MHz ~ 80 MHz

Field Strength: 3 Vrms

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Coupling device: CDN-M3 (3 wires)

8.7.2. TEST INSTRUMENT

CS Test Site (IEC/EN 61000-4-6)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
CDN	Frankonia	CDN M2+M3	A3011095	12/09/2020			
Continuous Wave Simulator	EM TEST	CWS 500N1.4	P1247105414	12/10/2020			
Couplihd/Decoupling Networks	FRANKONIA	CDN-RJ45	A3100030/2013	06/12/2020			
EM Injection Clamp	FCC	F-203I-23MM	449	06/12/2020			
6dB Attenuator	BIRD	75-A-FFN-06	0346	N.C.R			
Software	icd.control V5.3.8						

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration required

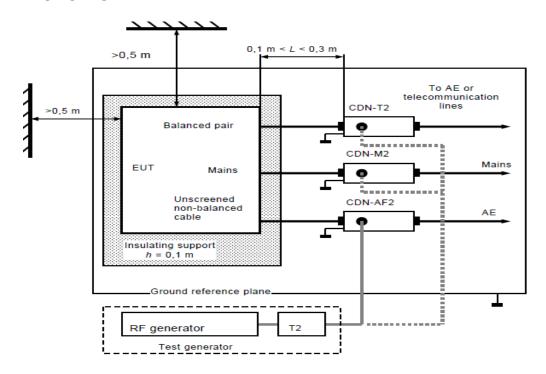
Page: 58 / 72

Report No.: T200109N08-E

Rev.: 00

8.7.3. TEST PROCEDURE

The EUT shall be tested within its intended operating and climatic conditions.


The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5×10^{-3} decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts were made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

8.7.4. TEST SETUP

Note:

- 1. The EUT is setup 0.1m above Ground Reference Plane
- 2. The CDNs and / or EM clamp used for real test depend on ports and cables configuration of EUT.

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

Page: 59 / 72 Rev.: 00

8.7.5. TEST RESULTS

For Model: 850 B5

Temperature	20°C	Humidity	52% RH
Pressure	1019mbar	Tested By	John Chen
Required Passing Performance	Criterion A	Test Mode	Full load

Test Date: 2020/02/03

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method	Performance Criterion	Result	Observation
0.15 ~ 80	3	AC Power	CDN-M3	⊠A □B	PASS	

Page: 60 / 72 Rev.: 00

8.8. POWER FREQUENCY MAGNETIC FIELD

8.8.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-8

Frequency Range: 50Hz

Field Strength: 1 A/m

Observation Time: 1 minute

Inductance Coil: Rectangular type, 1mx1m

8.8.2. TEST INSTRUMENT

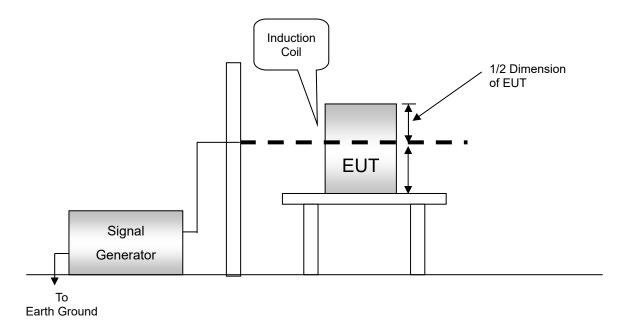
Immunity Shield Room					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
AC/DC CLAMP METER	PROVA	2003	02190104	05/13/2020	
Triaxial ELF Magnetic Field Meter	F.W. BELL	4190	1222007	06/12/2021	
Magnetic generator	Schaffner	MFO 6501	154	N.C.R	
Magnetic loops	Schaffner	INA 702	158	N.C.R	

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration required

8.8.3. TEST PROCEDURE

- a) The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b) The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c) The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d) The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.



 Report No.:
 T200109N08-E

 Page:
 61 / 72

 Rev.:
 00

8.8.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

 Report No.:
 T200109N08-E

 Page:
 62 / 72

 Rev.:
 00

8.8.5. TEST RESULTS

For Model: 850 B5

Temperature	17°C	Humidity	48% RH
Pressure	1018mbar	Tested By	John Chen
Required Passing Performance	Criterion A	Test Mode	Full load

Test Date: 2020/02/03

DIRECTION	Field Strength (A/m)	Performance Criterion	Result	Observation
X	1	⊠A □B	PASS	
Υ	1	⊠A □B	PASS	
Z	1	⊠A □B	PASS	

Page: 63 / 72 Rev.: 00

8.9. VOLTAGE DIPS & VOLTAGE INTERRUPTIONS

8.9.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-11

Test duration time: Minimum three test events in sequence

Interval between event: Minimum 10 seconds

Phase Angle: 0° / 45° / 90° / 135° / 180° / 225° / 270° / 315° / 360°

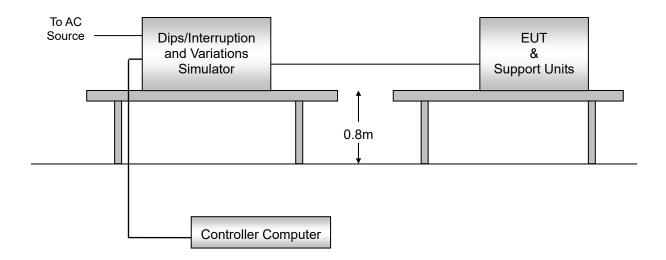
Test cycle: 3 times

8.9.2. TEST INSTRUMENT

Immunity shielded room					
Name of Equipment	Manufacturer Model Serial Number Calibration				
Ultra Compact Simulator	EM TEST UCS 500N7 P1552169754 04/01/202				
Software	iec.control V5.4.4				

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R. = No Calibration Required.


8.9.3. TEST PROCEDURE

- a) The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- b) Setting the parameter of tests and then perform the test software of test simulator.
- c) Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- d) Recording the test result in test record form.

Page: 64 / 72 Rev.: 00

8.9.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Page: 65 / 72 Rev.: 00

8.9.5. TEST RESULTS

For Model: 850 B5

Environmental Conditions	20°C, 52% RH, 1019mbar	Test Mode	Full load
Porformance	Criterion B: >95% reduction 0.5 periods Criterion C: 30% reduction 25 periods & >95% reduction 250 periods		John Chen

Test Date: 2020/02/03

Test Power: 230Vac, 50Hz						
Item	Voltage (% Reduction)	Duration (Period)	Performance Criterion	Test Result		
Voltage	>95	0.5	⊠A □B □C	PASS		
Dips	30	25	⊠A □B □C	PASS		
Voltage Interruption	>95	250	_A ⊠B _C	PASS		

 Report No.:
 T200109N08-E

 Page:
 66 / 72

 Rev.:
 00

9 PHOTOGRAPHS OF THE TEST CONFIGURATION CONDUCTED EMISSION TEST

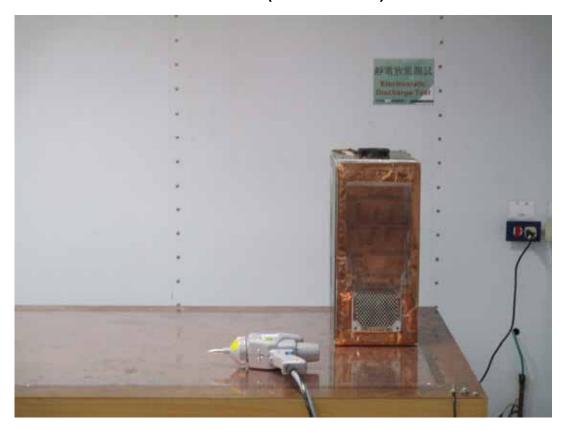


Page: 67 / 72 Rev.: 00

RADIATED EMISSION TEST

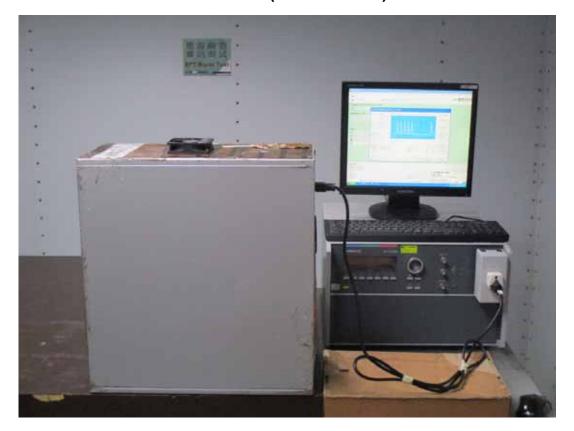
Page: 68 / 72 Rev.: 00

Harmonics Test (Model: 850 B5)


Flicker Test (Model: 850 B5)

Page: 69 / 72 Rev.: 00

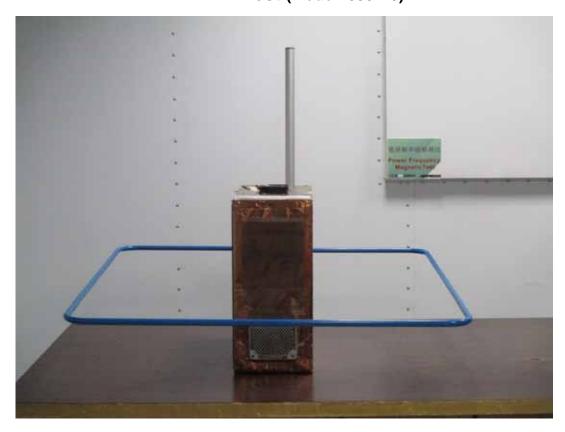
ESD Test (Model: 850 B5)


RS Test (Model: 850 B5)

Page: 70 / 72 Rev.: 00

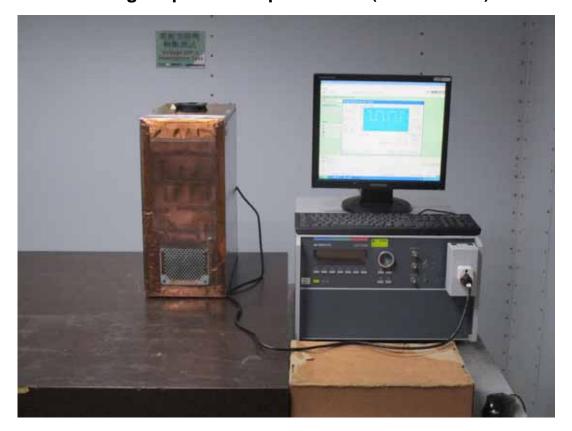
EFT Test (Model: 850 B5)

SURGE Test (Model: 850 B5)



Page: 71 / 72 Rev.: 00

CS Test (Model: 850 B5)


PFMF Test (Model: 850 B5)

Page: 72 / 72 Rev.: 00

Voltage Dips / Interruptions Test (Model: 850 B5)

 Report No.:
 T200109N08

 Page
 1 / 2

 Rev.
 00

Page 2 / 2

Report No.: T200109N08 Rev. 00

