

EMC TEST REPORT

Applicant.....: SHENZHEN FENDA TECHNOLOGY CO., LTD.

Address......: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen

City, Guangdong, China

Manufacturer.....: SHENZHEN FENDA TECHNOLOGY CO., LTD.

Address......: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen

City, Guangdong, China

Factory.....: SHENZHEN FENDA TECHNOLOGY CO., LTD.

Address...... : Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen

City, Guangdong, China

Product Name.....: Computer Multimedia Speaker

Brand Name.....: F&D

Model No. : PA300, PA200, PA928, PA948, PA310, PA100, PA388

(For model difference refer to section 2)

Measurement Standard.....: ETSI EN 301 489-1 V2.2.3: 2019

Draft ETSI EN 301 489-17 V3.2.2: 2019

Receipt Date of Samples...: November 11, 2020

Date of Tested.....: November 12, 2020 to December 18, 2020

Date of Report....: December 22, 2020

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of

Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced.

Prepared by

Alina Guo / Project Engineer

Iori Fan / Authorized Signatory

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Configuration of EUT	7
4. Description of Support Device	7
5. Test Facility	8
6. Test Conditions	9
7. Measurement Uncertainty	10
8. Measurement Bandwidths	10
9. Deviations and Abnormalities from Standard Conditions	10
10. Sample Calculations	11
11. Conducted Emission Measurement	12
12. Radiated Emission Measurement	17
13. Harmonic Current Emission Measurement	24
14. Voltage Fluctuations & Flicker Measurement	29
15. Performance Criteria for Immunity	32
16. Electrostatic Discharge Measurement	34
17. Continuous RF Electromagnetic Field Disturbances Measurement	38
18. Electrical Fast Transient/Burst Measurement	43
19. Surge Measurement	46
20. Continuous Induced RF Disturbances Measurement	50
21. Voltage Dips and Interruptions Measurement	53
22. Measuring Devices and Test Equipment	56
23. Photographs of Test Configuration	60
24 Photographs of the FUT	64

Revision History

Report Number	Description	Issued Date
NTC2011115EV00	Initial Issue	2020-12-22

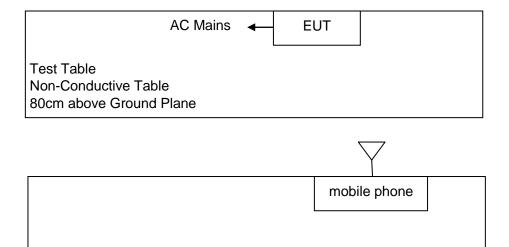
1. Summary of Test Result

	ETSI EN 301 489-1 V2.2.3: 20)19				
Draft ETSI EN 301 489-17 V3.2.2: 2019						
EMISSION						
Standard	Test Item	Result	Remarks			
	Conducted Emission (AC Mains)	PASS				
EN 55032: 2015	Conducted Emission (Wired network port)	N/A				
	Radiated Emission	PASS				
EN IEC 61000-3-2: 2019	Harmonic Current Emission	PASS				
EN 61000-3-3: 2013+A1:2019	Voltage Fluctuations & Flicker	PASS				
	IMMUNITY					
Standard	Test Item	Result	Remarks			
EN 61000-4-2: 2009	Electrostatic Discharges (ESD)	PASS				
EN 61000-4-3: 2006+A1: 2008+A2: 2010	Continuous RF Electromagnetic Field Disturbances	PASS				
EN 61000-4-4: 2012	Electrical Fast Transients/Burst (EFT/B)	PASS				
EN 61000-4-5: 2014	EN 61000-4-5: 2014 Surges					
EN 61000-4-6: 2014	Continuous Induced RF Disturbances	PASS				
IEC 61000-4-11: 2004	Voltage Dips and Interruptions	PASS				

2. General Description of EUT

Product Information			
Product name:	Computer Multimedia Speaker		
Main Model Name:	PA300		
Additional Model Name:	PA200, PA928, PA948, PA310, PA100, PA388		
Model Difference:	These models have the same circuit schematic, construction, PCB Layout and		
	critical components. The difference is model number only due to trading		
	purpose.		
S/N:	PA300EF204000001		
Brand Name:	F&D		
Hardware version:	V1.0		
Software version:	V1.0		
Rating:	AC 100-240V 50/60Hz		
	DC 12V from internal battery		
Classification:	Class B		
Typical arrangement:	Table-top		
I/O Port:	USB Port*1, MIC Port*2, AC Port*1, Optical Port*1, AUX Port*1		
Accessories Information			
Adapter:	N/A		
Cable:	AC Mains: 1.5m unshielded		
	Audio Line: 1.2m unshielded		
Other:.	IR Remote * 1		
Additional information			
Note:	According to these model difference, all tests were carried on model PA300		
Remark:	All the information above are provided by the manufacturer. More detailed		
	feature of the EUT please refers to the user manual.		

Technical Specification	
Bluetooth Function:	
BT Version:	V5.0
Frequency Range:	2402-2480MHz
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Number of Channel:	79
Channel space:	1MHz
Antenna Type:	PCB antenna
Antenna Gain:	0dBi (Declared by manufacturer)



3. Configuration of EUT

Description of Test Modes

Test Mode		Description
1 PT Link		Turn on the EUT and connect to mobile phone via Bluetooth function,
1.	BT Link	and make the EUT work.

Block Diagram of Configuration

4. Description of Support Device

Kept in a remote area

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks
1.	DVD Player	Pioneer	DV-310NC-K	0JTL03041 1CN	1.8m Unshielded, with core	
2.	Mobile Phone	Huawei	PCT-AL10	5EN02193 01002260		
3.	Microphone*2	Sony	USB 3.0 8GB			Provided by the laboratory
4.	USB DISK	Sony	USB 3.0 8GB			Provided by the laboratory
5.	Mobile Phone	HUAWEI	TAG-TL00	TAG-TL00 C01B166		

5. Test Facility

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Accreditations and	:	The Laboratory has been assessed and proved to be in compliance with
Authorizations		CNAS/CL01
		Listed by CNAS, August 13, 2018
		The Certificate Registration Number is L5795.
		The Certificate is valid until August 13, 2024
		The Laboratory has been assessed and proved to be in compliance with ISO17025
		Listed by A2LA, November 01, 2017
		The Certificate Registration Number is 4429.01
		The Certificate is valid until December 31, 2021
		Listed by FCC, November 06, 2017
		Test Firm Registration Number: 907417
		Listed by Industry Canada, June 08, 2017
		The Certificate Registration Number. Is 46405-9743A
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road,
		Nancheng District, Dongguan City, Guangdong Province, China

6. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks		
1.	Conducted Emission (AC Mains)	1	AC 110V / 60Hz	Hancock	See note 1		
1.	Conducted Emission (AC Mains)	'	AC 230V / 50Hz	Папсоск	See note i		
2.	Conducted Emission						
۷.	(Wired network Port)						
			AC 110V / 60Hz				
3.	Radiated Emission	1	AC 230V / 50Hz	Alvin	See note 1		
			DC 12V				
4.	Harmonic Current Emission	1	AC 230V / 50Hz	Loki	See note 1		
5.	Voltage Fluctuations & Flicker	1	AC 230V / 50Hz	Loki	See note 1		
			AC 110V / 60Hz				
6.	Electrostatic Discharges (ESD)	Electrostatic Discharges (ESD) 1	AC 230V / 50Hz	Loki	See note 2		
			DC 12V				
	Continuous RF Electromagnetic Field Disturbances		AC 110V / 60Hz				
7.				1	AC 230V / 50Hz	Ivan	See note 1
			DC 12V				
8.	Electrical Fast Transients/Burst (EFT/B)	1	AC 110V / 60Hz	Loki	See note 2		
			AC 230V / 50Hz		000 11010 =		
9.	Surges	1	AC 110V / 60Hz	Loki	See note 2		
J.		·	AC 230V / 50Hz	_3	2222		
10.	Continuous Induced RF Disturbances	1	AC 110V / 60Hz	Ivan	See note 2		
		·	AC 230V / 50Hz		2222		
			AC 100V / 60Hz				
11.	Voltage Dips and Interruptions	1	AC 230V / 50Hz	Loki	See note 2		
			AC 240V / 50Hz				

Note:

- The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35℃, 30~70%, 86~106kPa
- 2. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35 ℃, 30~60%, 86~106kPa
- 3. Only the worst voltage was recorded in the report.

7. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1	Conducted Emission (AC mains)	9KHz ~ 150KHz	± 3.04 dB	
1.	Conductor Emission (1.6 mains)	150KHz ~ 30MHz	± 2.52 dB	
2.	Conducted Emission (Wired network Port)	150KHz ~ 30MHz	± 2.52 dB	
3.	Radiated Emission Test	30MHz ~ 1GHz	± 4.68 dB	
	radiated Emission rest	1GHz ~ 6GHz	± 5.14 dB	

Note:

- 1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.

8. Measurement Bandwidths

No.	Frequency Range Peak Level Quasi-Peak (MHz) (kHz)		Quasi-Peak Level (kHz)	Average Level (kHz)
1.	0.01 ~ 0.15	1.0	0.2	0.2
2.	0.15 ~30.0	10.0	9.0	9.0
3.	30 ~ 1000	100.0	120.0	120.0
4.	Above 1000	1000.0	N/A	1000.0

Note: Measurements were made using the bandwidths and detectors specified by the standard. No video filter was used.

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Sample Calculations

	Conducted Emission						
Freq. Reading Level Correct Factor Measurement Limit Over (MHz) (dBuV) (dB) Detecto							
0.1900	30.10	10.60	40.70	79.00	-38.30	QP	

Where,

Freq. =Emission frequency in MHz

Reading Level = Uncorrected Analyzer/Receiver reading

Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation

Measurement = Reading + Corrector Factor

Limit =Limit stated in standard

Margin = Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

	Radiated Emission								
Freq. Reading Level Correct Factor Measurement Limit Over (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB)									
60.0700	45.88	-18.38	27.50	49.00	-21.50	QP			

Where,

Freq. = Emission frequency in MHz

Reading Level = Uncorrected Analyzer/Receiver reading

Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier

Measurement = Reading + Corrector Factor

Limit = Limit stated in standard

Over = Margin, which calculated by Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

11. Conducted Emission Measurement

LIMIT

Limits for conducted disturbance for the AC mains power ports:

Frequency	□Class	A (dBuV)	⊠Class B (dBuV)		
(MHz)	Quasi-peak Ave		Quasi-peak	Average	
0.15 to 0.5	79	66	66 to 56	56 to 46	
0.5 to 5	73	60	56	46	
5 to 30	73	60	60	50	

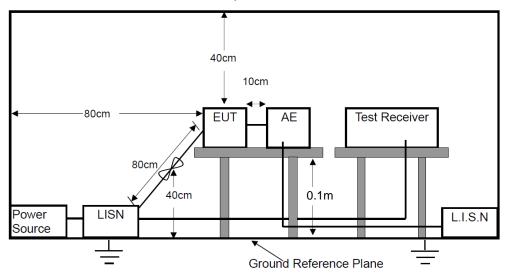
Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.

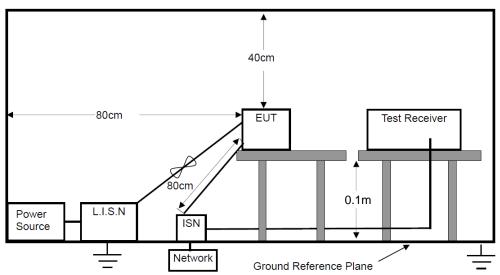
- 2. The higher value measured with and without the outer conductor screen of the antenna terminal connected to earth is considered.
- Television receivers with teletext facilities should be tested in teletext mode with teletext Picture.
- 4. The lower limit shall apply at the transition frequencies.
- 5. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

Limits for conducted disturbance for asymmetric mode (Wired network Port):

Frequency (MHz)	Voltage limits							
	□Class A	A (dB(uV))	☐Class B (dBuV)					
	Quasi-peak Average		Quasi-peak	Average				
0.15 to 0.5	97 to 87	84 to 74	84 to 74	74 to 64				
0.5 to 30	87	74	74	64				

Note: 1. The lower limit shall apply at the transition frequencies.


The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to $0.5 \mathrm{MHz}$.



BLOCK DIAGRAM OF TEST SETUP

Conducted Disturbance at the Mains power Ports

Conducted Disturbance for asymmetric mode at the wired network ports

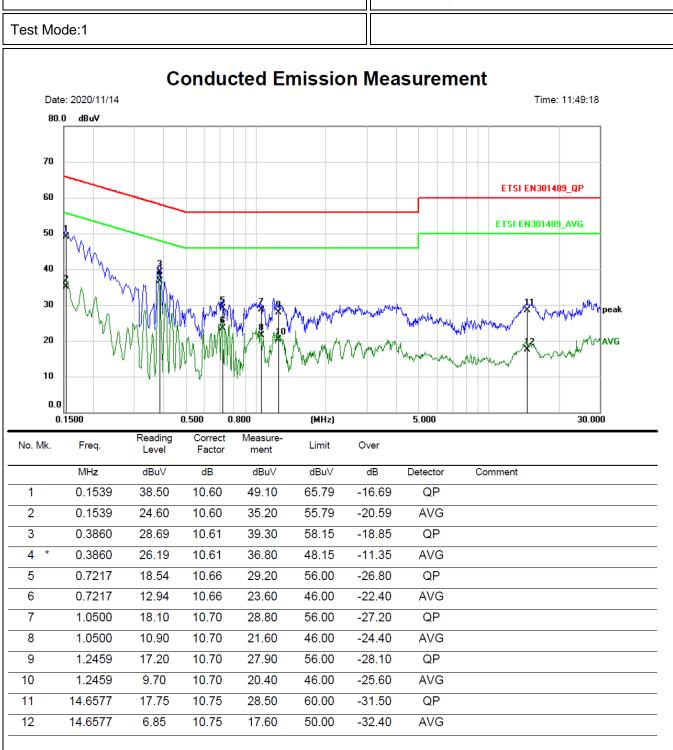
TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.1m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. Configure the EUT and support devices as per section 3.
- c. All I/O cables and support devices were positioned as per EN 55032.
- d. Connect mains power port of the EUT to a line impedance stabilization network (LISN) and wired network port to Asymmetric Artificial Network (AAN).
- e. Connect all support devices to the other LISN and AAN, if needed.
- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per EN 55032.
- h. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for conducted interference checking
- i. Repeat the above scans in each mode and record the test data.

TEST RESULTS


PASS

Please refer to the following pages.


M/N: PA300	Testing Voltage: AC 230V/50Hz		
Phase: L1	Detector: QP & AVG		
Test Mode: 1			

M/N: PA300	Testing Voltage: AC 230V/50Hz		
Phase: N	Detector: QP & AVG		
Test Mode:1			

12. Radiated Emission Measurement

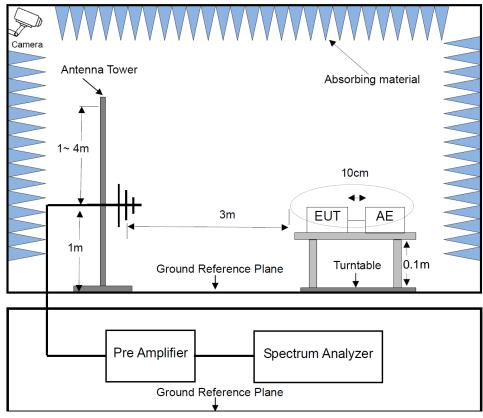
LIMITS

Below 1GHz:

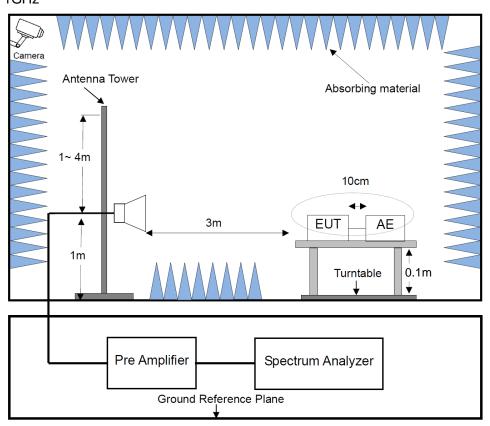
	☐ Cla	ass A	☐ Class B				
Frequency (MHz)	Quasi-peak	dB(uV/m)	Quasi-peak dB(uV/m)				
	At 3m	At 10m	At 3m At 10m				
30 to 230	50	40	40	30			
230 to 1000	57	47	47	37			
Note 1. The lower limit shall apply at the transition frequency.							
2. Additional provisions may be required for cases where interference occurs.							

Above 1GHz:

Frequency	☐ Class	A at 3m	☐ Class B at 3m		
(GHz)	Peak dB(uV/m)	Average dB(uV/m)	Peak dB(uV/m)	Average dB(uV/m)	
1 ~ 3	76	56	70	50	


Required highest frequency for radiated measurement

F	lighe	st internal frequency* (F _x)	Highest measured frequency						
		F _x ≤ 108 MHz	1 GHz						
	108	B MHz < F _x ≤ 500 MHz	2 GHz						
	50	00 MHz < F _x ≤ 1 GHz	5 GHz						
		$F_x > 1 \text{ GHz}$	$5 \times F_x$ up to a maximum of 6 GHz						
Note	Note 1. Highest fundamental frequency generated or used within the EUT or highest frequency which it operates.								
	2.	Where F _x is unknown, the radiated emission measurements shall be performed up to 6 GHz.							



BLOCKDIAGRAM OF TEST SETUP

Below 1GHz:

Above 1GHz

TEST PROCEDURES

- a. The EUT was placed on a rotatable wooden table top 0.1m above ground.
- b. The EUT was set 3m away from the receiving antenna which was mounted on the top of a variable height antenna tower.
- c. Configure the EUT and support devices as per section 3.
- d. All I/O cables and support devices were positioned as per EN 55032.
- e. Connect mains power port of the EUT to the outlet socket under the turntable and connect all other support devices to other outlet socket under the turntable.
- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per EN 55032.
- h. Scan the frequency range from 30MHz to 6000MHz for radiation emissions checking.
- i. Emissions were scanned and measured rotating the EUT from 0 to 360 degrees and positioning the antenna from 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- j. Repeat the above scans in each mode and channel and record the test data.

TEST RESULTS

PASS

Please refer to the following pages of the worst case.

30.0000 127.000

321.000

418.000

M/N: PA300	Testing Voltage: AC 230V/50Hz		
Polarization: Horizontal	Detector: QP		
Test Mode: 1	Distance: 3m		

Radiated Emission Measurement Date: 2020/11/16 Time: 14:53:42 80.0 dBuV/m 70 60 50 Margin - 6 dB 10

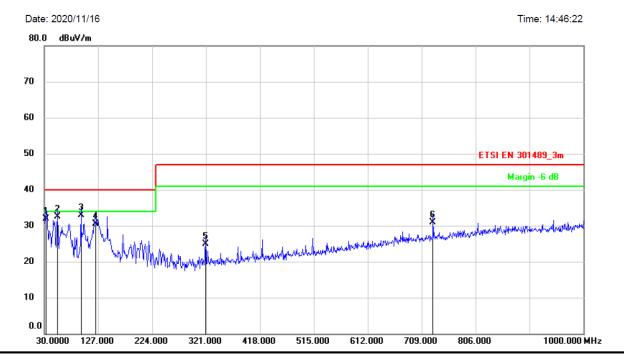
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		47.4600	27.45	-7.45	20.00	40.00	-20.00	QP		
2	*	127.0000	34.50	-10.20	24.30	40.00	-15.70	QP		
3		218.1800	31.74	-7.44	24.30	40.00	-15.70	QP		
4		320.0300	30.58	-4.98	25.60	47.00	-21.40	QP		
5		421.8800	29.88	-2.98	26.90	47.00	-20.10	QP		
6		729.3700	25.20	2.70	27.90	47.00	-19.10	QP		

515.000

612.000

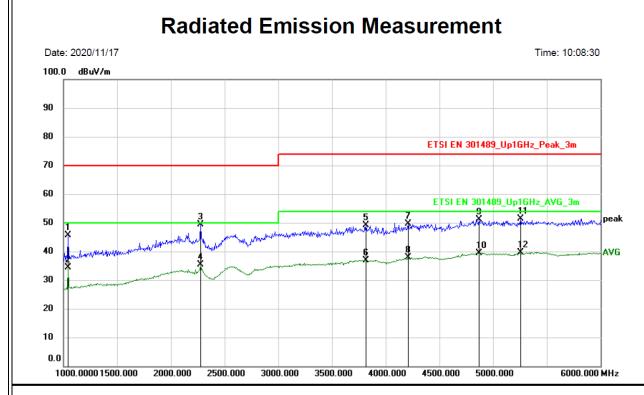
709.000

806.000


1000.000 MHz

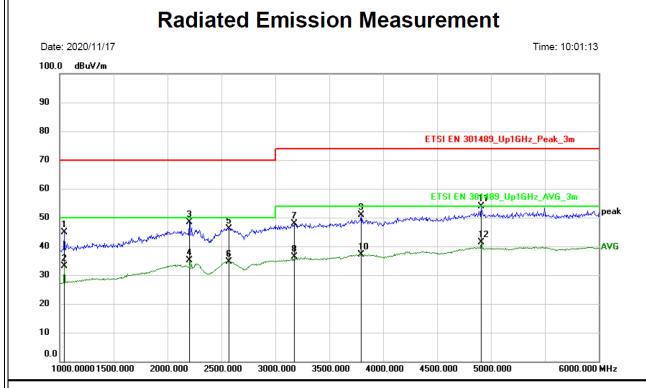
M/N: PA300	Testing Voltage: AC 230V/50Hz		
Polarization: Vertical	Detector: QP		
Test Mode: 1	Distance: 3m		

Radiated Emission Measurement



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		32.9100	41.49	-9.49	32.00	40.00	-8.00	QP		
2		54.2500	40.24	-7.64	32.60	40.00	-7.40	QP		
3	*	95.9600	42.05	-9.05	33.00	40.00	-7.00	QP		
4		122.1500	41.65	-11.15	30.50	40.00	-9.50	QP		
5		320.0300	30.98	-5.98	25.00	47.00	-22.00	QP		
6		729.3700	28.30	2.70	31.00	47.00	-16.00	QP		

M/N: PA300	Testing Voltage: AC 230V/50Hz	
Polarization: Horizontal	Detector: Peak & AVG	
Test Mode: 1	Distance: 3m	

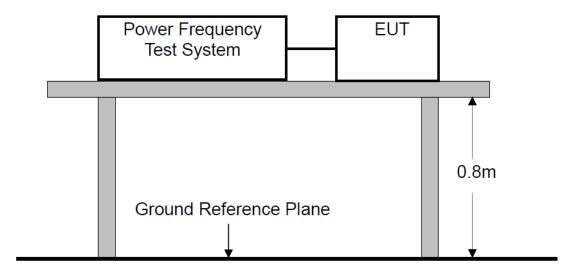


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		1043.750	55.23	-9.50	45.73	70.00	-24.27	peak		
2		1043.750	43.87	-9.50	34.37	50.00	-15.63	AVG		
3		2275.000	49.50	-0.22	49.28	70.00	-20.72	peak		
4		2275.000	35.54	-0.22	35.32	50.00	-14.68	AVG		
5		3818.750	45.69	3.46	49.15	74.00	-24.85	peak		
6		3818.750	33.51	3.46	36.97	54.00	-17.03	AVG		
7		4212.500	45.20	4.47	49.67	74.00	-24.33	peak		
8		4212.500	33.45	4.47	37.92	54.00	-16.08	AVG		
9		4868.750	44.63	6.55	51.18	74.00	-22.82	peak		
10		4868.750	32.86	6.55	39.41	54.00	-14.59	AVG		
11		5256.250	44.53	6.81	51.34	74.00	-22.66	peak		
12	*	5256.250	32.74	6.81	39.55	54.00	-14.45	AVG		

M/N: PA300	Testing Voltage: AC 230V/50Hz
Polarization: Vertical	Detector: Peak & AVG
Test Mode: 1	Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		1043.750	54.39	-9.50	44.89	70.00	-25.11	peak		_
2		1043.750	42.55	-9.50	33.05	50.00	-16.95	AVG		
3		2200.000	48.85	-0.40	48.45	70.00	-21.55	peak		
4		2200.000	35.63	-0.40	35.23	50.00	-14.77	AVG		
5		2568.750	45.51	0.64	46.15	70.00	-23.85	peak		
6		2568.750	34.06	0.64	34.70	50.00	-15.30	AVG		
7		3175.000	45.90	2.00	47.90	74.00	-26.10	peak		
8		3175.000	34.33	2.00	36.33	54.00	-17.67	AVG		
9		3793.750	47.53	3.39	50.92	74.00	-23.08	peak		
10		3793.750	33.72	3.39	37.11	54.00	-16.89	AVG		
11		4912.500	47.04	6.72	53.76	74.00	-20.24	peak		
12	*	4912.500	34.57	6.72	41.29	54.00	-12.71	AVG		

13. Harmonic Current Emission Measurement


LIMITS

Limit of Harmonic Current Emission

Limits for	Class A equipment	Limits for Class D equipment					
Harmonics order h	Maximum permissible harmonics Current A	Harmonics order n	Maximum permissible harmonics current per watt mA/W	Maximum permissible harmonics current A			
Od	d harmonics		Odd harmonics only				
3	2.30	3	3.4	2.30			
5	1.14	5	1.9	1.14			
7	0.77	7	1.0	0.77			
9	0.40	9	0.5	0.40			
11	0.33	11	0.35	0.33			
13	0.21	13	0.30	0.21			
15≤h≤39	0.15×15/h	15≤h≤39	3.85/n	0.15×15/h			
Eve	en harmonics	-	-	-			
2	1.08	-	-	-			
4	0.43	-	-	-			
6	0.30	-	-	-			
8≤h≤40	0.23×8/h	-	-	-			

Note: The limits above are not specified for equipment with a rated input power of 75W or less (other than lighting equipment).

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m above ground.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. Set the EUT to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- e. Classify the EUT as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D,

 Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment

 not specified in one of the three other classes.
 - Class B: Portable tools; Arc welding equipment which is not professional equipment.
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600W of the Personal computers and personal computer monitors and television receivers
- f. Set correspondent test program and measurement time of the test system to measure the current harmonics emanated from EUT, and then record the test data.

TEST RESULTS

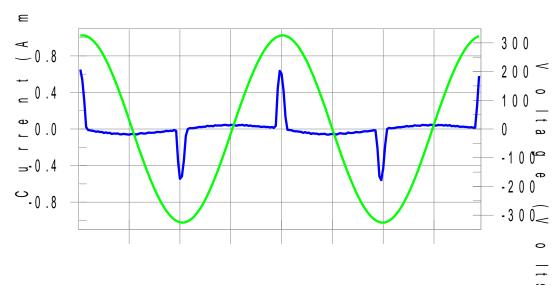
Pass

Please refer to the following pages of the worst case.

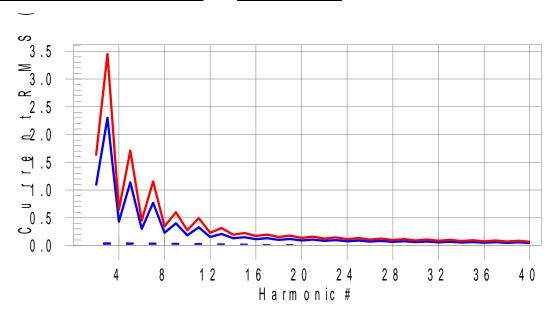
According to clause 7 of EN 61000-3-2, equipment with a rated power of 75W or less, no limits apply. It is considered to meet the requirements of the standard.

Harmonics - Class-A per Ed. Ed. 5.0 (2018)(Run time)

EUT: Cumputer Multimedia Speaker
Test category: Class-A per Ed. 5.0 (2018) (European limits)
Test date: 2020/11/23
Start time: 5:09:55
Tested by: Loki
Test Margin: 100
End time: 5:12:36


Test duration (min): 2.5 Data file name: H-000427.cts_data

Comment: BT Link Customer: FENDA


M/N:PA300

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line European Limits

Test result: Pass Worst harmonics H15-13.4% of 150% limit, H15-20.1% of 100% limit

Current Test Result Summary (Run time)

EUT: Cumputer Multimedia Speaker Tested by: Loki Test category: Class-A per Ed. 5.0 (2018) (European limits) Test Margin: 100 Test date: 2020/11/23 Start time: 5:09:55 End time: 5:12:36

Test duration (min): 2.5 Data file name: H-000427.cts data

Comment: BT Link **Customer: FENDA**

M/N:PA300

Test Result: Pass Source qualification: Normal

THC(A): 0.126 I-THD(%): 183.3 POHC(A): 0.021 POHC Limit(A): 0.251

Highest parameter values during test:

V_RMS (Volts): 230.48 I_Peak (Amps): 0.658 I_Fund (Amps): 0.069 Power (Watts): 13.1 Frequency(Hz): 50.00 I_RMS (Amps): Crest Factor: 0.144 4.621 **Power Factor:** 0.399

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.005	1.080	0.5	0.006	1.620	0.4	Pass
3	0.055	2.300	2.4	0.056	3.450	1.6	Pass
4	0.005	0.430	1.2	0.006	0.645	0.9	Pass
5	0.053	1.140	4.6	0.053	1.710	3.1	Pass
6	0.005	0.300	N/A	0.005	0.450	N/A	Pass
7	0.050	0.770	6.4	0.050	1.155	4.3	Pass
8	0.004	0.230	N/A	0.005	0.345	N/A	Pass
9	0.045	0.400	11.4	0.046	0.600	7.6	Pass
10	0.004	0.184	N/A	0.004	0.276	N/A	Pass
11	0.041	0.330	12.4	0.041	0.495	8.3	Pass
12	0.003	0.153	N/A	0.004	0.230	N/A	Pass
13	0.036	0.210	16.9	0.036	0.315	11.3	Pass
14	0.003	0.131	N/A	0.003	0.197	N/A	Pass
15	0.030	0.150	20.1	0.030	0.225	13.4	Pass
16	0.003	0.115	N/A	0.003	0.173	N/A	Pass
17	0.025	0.132	18.7	0.025	0.198	12.5	Pass
18	0.002	0.102	N/A	0.002	0.153	N/A	Pass
19	0.019	0.118	16.3	0.019	0.178	10.9	Pass
20	0.002	0.092	N/A	0.002	0.138	N/A	Pass
21	0.014	0.107	13.3	0.014	0.161	9.0	Pass
22	0.002	0.084	N/A	0.002	0.125	N/A	Pass
23	0.010	0.098	10.0	0.010	0.147	6.8	Pass
24	0.002	0.077	N/A	0.002	0.115	N/A	Pass
25	0.006	0.090	6.7	0.006	0.135	4.6	Pass
26	0.002	0.071	N/A	0.002	0.107	N/A	Pass
27	0.003	0.083	N/A	0.003	0.125	N/A	Pass
28	0.001	0.066	N/A	0.002	0.099	N/A	Pass
29	0.002	0.078	N/A	0.002	0.116	N/A	Pass
30	0.001	0.061	N/A	0.002	0.092	N/A	Pass
31	0.003	0.073	N/A	0.003	0.109	N/A	Pass
32	0.001	0.058	N/A	0.001	0.086	N/A	Pass
33	0.004	0.068	N/A	0.004	0.102	N/A	Pass
34	0.001	0.054	N/A	0.001	0.081	N/A	Pass
35	0.004	0.064	N/A	0.005	0.096	N/A	Pass
36	0.001	0.051	N/A	0.001	0.077	N/A	Pass
37	0.004	0.061	N/A	0.005	0.091	N/A	Pass
38	0.001	0.048	N/A	0.001	0.073	N/A	Pass
39	0.004	0.058	N/A	0.004	0.087	N/A	Pass
40	0.001	0.046	N/A	0.001	0.069	N/A	Pass

Note: The EUT power level is below 75.0 Watts and therefore has no defined limits

Voltage Source Verification Data (Run time)

EUT: Cumputer Multimedia Speaker Tested by: Loki Test category: Class-A per Ed. 5.0 (2018) (European limits)
Test date: 2020/11/23 Start time: 5:09:55 Test Margin: 100 End time: 5:12:36

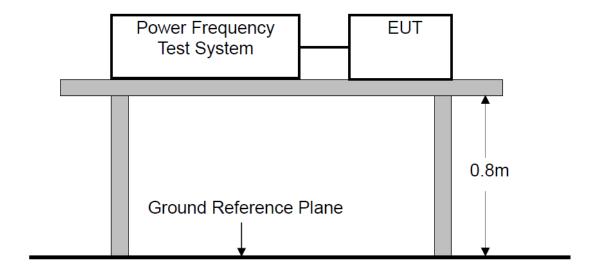
Test duration (min): 2.5 Comment: BT Link Data file name: H-000427.cts data

Customer: FENDA M/N:PA300

Test Result: Pass Source qualification: Normal

Highest parameter values during test:
Voltage (Vrms): 230.48
I_Peak (Amps): 0.658
I_Fund (Amps): 0.069
Power (Watts): 13.1 Frequency(Hz): 50.00 I_RMS (Amps): 0.144 **Crest Factor:** 4.621 **Power Factor:** 0.399

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.077	0.461	16.67	ОК
3	0.526	2.074	25.34	OK
2 3 4 5 6	0.073	0.461	15.74	OK
5	0.042	0.922	4.52	OK
6	0.037	0.461	8.08	OK
7	0.046	0.691	6.66	OK
8	0.013	0.461	2.73	OK
9	0.038	0.461	8.30	OK
10	0.012	0.461	2.56	OK
11	0.039	0.230	16.72	OK
12	0.012	0.230	5.40	OK
13	0.025	0.230	10.77	OK
14	0.004	0.230	1.67	OK
15	0.026	0.230	11.07	OK
16	0.008	0.230	3.35	OK
17	0.023	0.230	9.91	OK
18	0.013	0.230	5.59	OK
19	0.024	0.230	10.29	OK
20	0.021	0.230	8.97	OK
21	0.020	0.230	8.53	OK
22	0.004	0.230	1.86	OK
23	0.013	0.230	5.57	OK
24	0.004	0.230	1.75	OK
25	0.009	0.230	3.88	OK
26	0.004	0.230	1.65	OK
27	0.003	0.230	1.40	OK
28	0.004	0.230	1.55	OK
29	0.006	0.230	2.60	OK
30	0.003	0.230	1.40	OK
31	0.005	0.230	2.21	OK
32	0.004	0.230	1.56	OK
33	0.006	0.230	2.66	OK
34 25	0.003	0.230	1.34	OK
35 36	0.007	0.230	2.95	OK OK
36 37	0.003	0.230	1.24	OK OK
3 <i>1</i> 38	0.007 0.002	0.230 0.230	3.06 1.00	OK OK
36 39	0.002 0.007	0.230 0.230	3.20	OK
39 40	0.007 0.011	0.230 0.230	3.20 4.70	OK
40	0.011	0.∠30	4.70	UK



14. Voltage Fluctuations & Flicker Measurement

LIMIT

Test Item	Limit	Remarks	
P _{st}	1.0	P _{st} = Short-term flicker indicator	
P _{lt}	0.65	P _{It} = Long-term flicker indicator	
T_{dt}	500ms	T_{dt} = Maximum accumulated time that dt with a deviation exceeding 3,3 %	
d _{max} (%)	4%	d _{max} = Maximum relative voltage change	
d _c (%)	3.3%	d _c = Maximum relative steady-state voltage change	

BLOCK DIAGRAM OF TEST SETUP

Test Procedure

- a. The EUT was placed on a wooden table 0.8m above ground.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. Set the EUT to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- e. Set correspondent test program and measurement time of the test system to measure the most unfavorable sequence of voltage changes from EUT, and then record the test data.

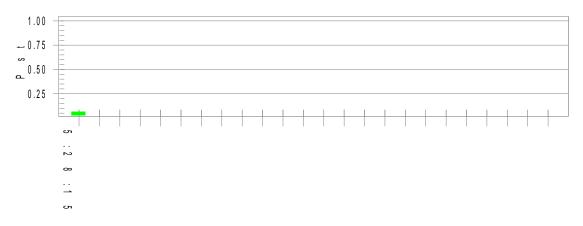
TEST RESULTS

Pass.

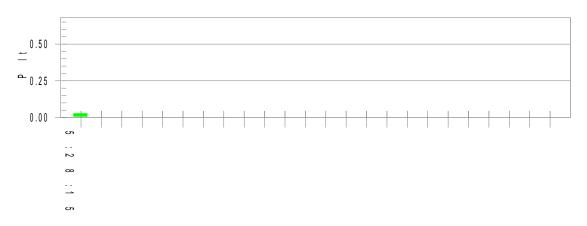
Please refer to the following page.

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)

EUT: Cumputer Multimedia Speaker Tested by: Loki Test category: All parameters (European limits) Test Margin: 100 Test date: 2020/11/23 Start time: 5:17:54 End time: 5:28:22


Test duration (min): 10 Data file name: F-000428.cts_data Comment: BT Link

Comment: BT Link Customer: FENDA M/N: PA300


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

Parameter values recorded during the test:

vrms at the end of test (voit):	230.47			
T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.028	Test limit:	0.650	Pass

15. Performance Criteria for Immunity

The performance criteria are referred to the test standard: Draft ETSI EN 301 489-17

Criteria	During Test	After Test
А	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 3). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.
В	May show loss of function (one or more). May show degradation of performance (see note 2). Shall be no unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3). Shall be no loss of stored data or user programmable functions.
С	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3).

NOTE1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

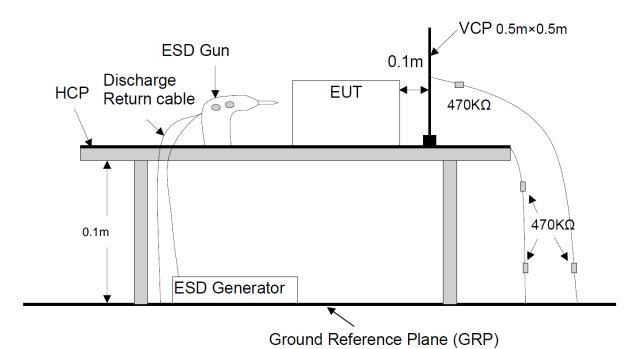
NOTE3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Performance Criteria For Continuous Phenomena (CT & CR)

At the conclusion of the test the EUT shall operated as intended with no loss of user control functions or stored data, the communication link shall have been maintained during the test.

Performance Criteria For Transient Phenomena (TT & TR)

At the conclusion of each exposure the EUT shall operated with no user noticeable loss of communication link.



16. Electrostatic Discharge Measurement

TEST LEVEL

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1	±2.0	±2.0
2	±4.0	±4.0
3	±6.0	±8.0
4	±8.0	±15.0
Х	Special	Special
Note:	"x" is an open level.	

BLOCK DIAGRAM OF TEST SETUP

Page 34 of 74

TEST PROCEDURES

Air Discharge:

Air discharges at slots and apertures and insulating surfaces. On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

Contact Discharge:

Contact discharges to the conductive surfaces and coupling planes. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 20 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 20 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

- a. The EUT was placed on a wooden table 0.1m height from the ground.
- b. The EUT was located 0.1m minimum from all side of the HCP (dimensions 1.6m x0.8m).
- c. Configure the EUT and support devices as per section 3.
- d. The support units were located 30cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10cm with EUT.
- e. Turn on the EUT and all support devices, and make it run stably.
- f. The time interval between two successive single discharges was at least 1 second. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- g. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

- h. At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharges.
- i. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.
- j. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT:

Description	Level	Performance Criterion
Contact Discharge	±4.0KV	В
Air Discharge	±8.0KV	В

TEST RESUSLT

PASS

Please refer to the following pages.

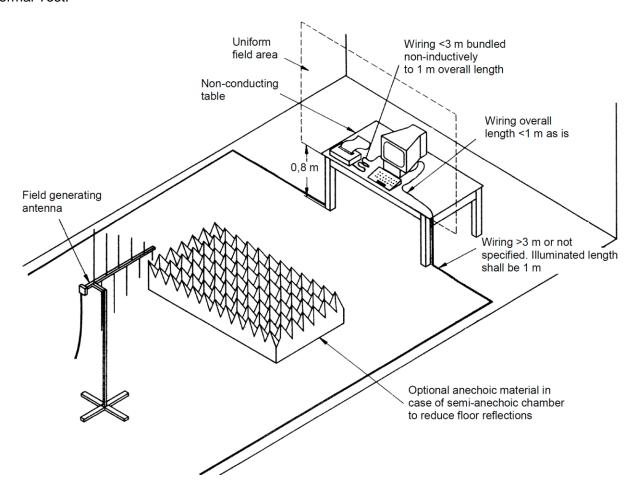
Electrostatic Discharge Test Results				
Ambient Condition:	Temp.: 26°C	R.H.: 48% Air Pressure : 101 kPa		
	Test level:	±2, 4 KV for Contac	ontact Discharge	
		±2, 4, 8 KV for Air D	vischarge	
	Discharge impedance:	330ohm / 150pF		
Test Specifications	NO. of discharges:	10 times at each tes	st point for each polarity at	
	Polarity:	Positive / Negative		
	Discharge mode:	Single parges: ≥1s		
	Interval time of discharges:	≥1s		
Required Performance Criterion	В			
Tested mode	1			
Test Point		Kind A-Air Discharge C-Contact Discharge	Result (Performance Criterion)	
Metal, MIC Port, Optical		С	А	
USB Port		С	В	
MIC Port, AUX Port		А	В	
AC Port, Button, Screen		А	А	
Indirect Discharge (VCP)		C A		
Indirect Discharge (HCP)				

Note: The noise phenomenon occurred during the test, but the EUT can be resumed to normal operation after the test.

ESD TEST POINT

⇔ Direct Air Discharge; ⇔ Direct Contact Discharge)

17. Continuous RF Electromagnetic Field Disturbances Measurement


TEST LEVEL

Field Strength V/m
1
3
10
Special

Note: "x" is an open test level and the associated field strength may be any value.

BLOCK DIAGRAM OF TEST SETUP

Normal Test:

TEST PROCEDURES

- a. The testing was performed in a fully anechoic chamber.
- b. The EUT and necessary support devices were placed on a turn table which is 0.1 meter above ground.
- c. EUT was set 3 meter away from the transmitting antenna which is mounted on an antenna tower.
- d. Configure the EUT and support devices as per section 3.
- e. Turn on the EUT and all support devices, and make it run stably.
- f. Set horizontal and vertical polarization of the antenna to test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.
- g. All the scanning conditions are as follows:
- h. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

Description	Level	Frequency	Performance Criterion
RF Field Strength Susceptibility	3V/m	80~6000MHz	A

TEST RESULTS

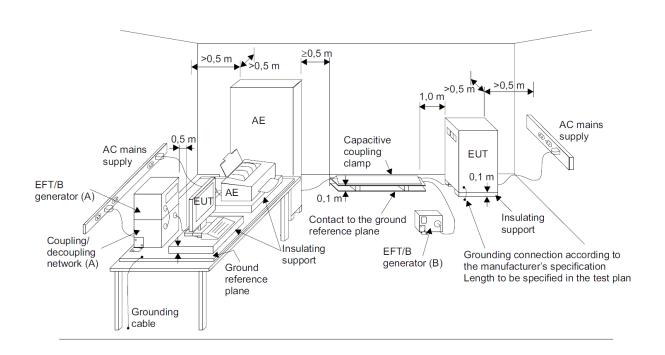
PASS

Please refer to the following pages.

RF Field Strength Susceptibility Test Results					
Ambient Condition	Temp.: 25 ℃		R.H.: 50 %	Air Pressure: 101 kPa	
	Fielded Streng	gth:	3V/m		
	Modulation:		1kHz sine wave, 80%AM		
Test Specifications	Frequency Siz	e:	1% of preceding frequen	ncy value	
	Dwell Time:		1s		
	Mode:		Swept test / Spot test		
Required Performance Criterion	Α				
Tested mode	1				
Frequency (MHz)	Level (V/m)	Antenna polarity	Side	Result (Performance Criterion)	
			Front	А	
		Horizontal	Left A	А	
		Horizoniai	Right	А	
80-6000	3		Back	А	
00-0000	J		Front	А	
		Vartical	Left	А	
		Vertical	Right	А	
			Back	А	

Note: During the test, the EUT did not show any abnormality.

18. Electrical Fast Transient/Burst Measurement


TEST LEVEL

	Open circuit output test voltage and repetition rate of the impulses						
	On power port, Earth port (PE) Signal and control ports			Signal and control ports			
Level	Voltage peak (KV)	Repetition rate (KHz)	Voltage peak (KV)	Repetition rate (KHz)			
1	0.5	5 or 100	0.25	5 or 100			
2	1	5 or 100	0.5	5 or 100			
3	2	5 or 100	1	5 or 100			
4	4	5 or 100	2	5 or 100			
Х	Special	Special	Special	Special			

Note 1. The use of 5 KHz repetition rates is traditional; however, 100 KHz is closer to reality. Product committees should determine which frequencies are relevant for specific products or product types.

- 2. With some products, there may be no clear distinction, between power ports and I/O ports, in which case it is up to product committees to make this determination for test purposes.
- 3. "X" is an open level. The level has to be specified in the dedicated equipment specification.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on the insulating support 0.1m above the reference ground plane.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. For input and output AC power port of the EUT, the EUT was connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. The coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.
- e. For signal ports of the EUT, the EUT was connected to the power mains, and the signal line through a coupling device which couples the EUT interference signal to signal line. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.
- f. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

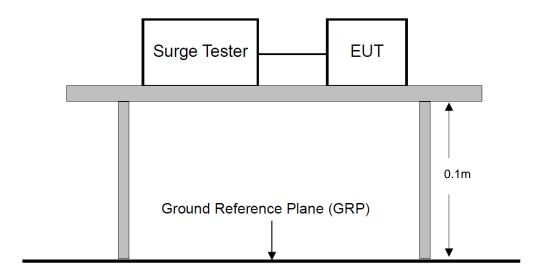
Description	AC Mains power ports	Analogue/digital data ports
Test Level	1.0KV	0.5KV
Repetition frequency	5kHz	5kHz
Impulse Wave-shape	5/50ns (Tr/Th)	5/50ns (Tr/Th)
Performance Criterion	В	В

TEST RESULTS

PASS

Please refer to the following pages.

Electrical Fast Transient/Burst Test Results				
Ambient Condition	Temp.: 26 ℃	R.H.: 48 %	Air Pressure: 101 kPa	
	Test Level	1.0 kV for power port 0.5 kV for signal port		
	Repetition Frequency:	5kHz;		
Test Specifications	Duration :	15ms		
1001 2 2011 2	Period :	300ms		
	Impulse wave shape :	5/50ns (Tr/Th)		
	Test Duration :	≥1min		
Required Performance Criterion	В			
Test mode	1			
Coupling mode and port		ect Coupling Signal	line Capacitive	
Test Line	Test Voltage	Result (Performance Criterion)		
L	±1KV		В	
N	±1KV	В		
PE			-	
L, N	±1KV		В	
L、PE	-		-	
N、PE			-	
L、N、PE	-	-		
Signal port (RJ- 45)	-	-		
DC line	-		-	
Note: The lamp flickered during the test, but the EUT can be manually resumed to normal operation.				


19. Surge Measurement

TEST LEVEL

Level	Open-Circuit Test Voltage (kV)		
Level	Line to Line	Line to Earth	
1	-	0.5	
2	0.5	1	
3	1	2	
4	2	4	
X	Special	Special	

Note: "X" can be any level, above, below or in between the others. The level shall be specified in the dedicated equipment specification.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on the wooden table 0.1m above the ground.
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. The surge is applied to the EUT power supply terminals via the capacitive coupling network Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- e. For test applied to unshielded un-symmetrically operated interconnection lines of EUT, the surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- f. For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT, the surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- g. Five positive and five negative (polarity) pulses at specified phase angles with a 1min repetition rate are conducted during test.
- h. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

	AC Mains	s power ports	igital data ports	
Description	Line to Line	Line to Earth	Unshielded Symmetrical	Coaxial or Shielded
Test Level	1.0kV	2.0kV	1.0 and 4.0Kv*	0.5kV
Wave-Shape	1.2/50(8/20)us	1.2/50(8/20)us	10/700 (5/320)us	1.2/50(8/20)us
Performance Criterion	В	В	С	В

Note: *: Surges are applied with primary protection fitted. Where possible, use the actual primary protector intended to be used in the installation. Where the surge coupling network for the 10/700 (5/320)µs waveform affects the functioning of high speed data ports, the test shall be carried out using a 1,2/50 (8/20)us waveform and appropriate coupling network.

TEST RESULTS

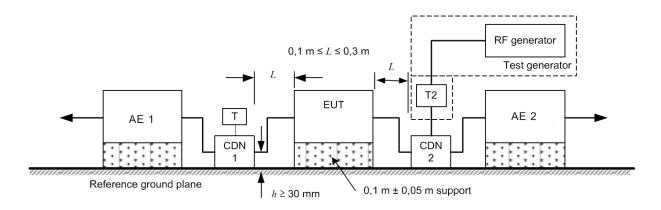
PASS

Please refer to the following pages.

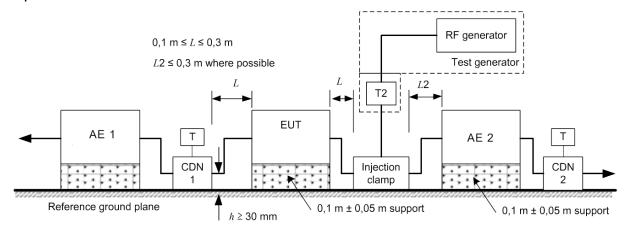
Surge Immunity Test Results				
Ambient Condition	Temp.: 27 ℃	R.H.: 37 %	Air Pressure: 101 kPa	
	Wave-shape:	1.2/50 us (Tr/Th) / 8/20 us (Tr/Th) for input poewr p 10/700 us (Tr/Th) / 5/320 us (Tr/Th) for Signal port		
	Test Level:	±0.5, 1.0kV for Line to Line ±1.0, 2.0kV for Line to Ear		
	Phase angle:	0°, 90°, 180° and 270°		
Test Specifications	Polarity	Positive / Negative 5 positive / 5 negative 1 time per minute / maximum 2 ohm / power supply network 12 ohm / power supply network to ground 42 ohm / other lines to ground /		
	NO. of pulse :			
	Pulse repetition rate :			
	Generagor source impendence :			
Required Performance Criterion	В			
Test mode	1			
Test Line	Phase Angle	Test Voltage	Result (Performance Criterion)	
L-N	0°, 90°, 180°, 270°	±1KV	А	
L-PE	-	-	-	
N-PE	-	-	-	
Signal port (RJ -45)	-	-	-	
Signal port (RJ -11)	-	-	-	
DC line	-	-	-	

Note: During the test, the EUT did not show any abnormality.

20. Continuous Induced RF Disturbances Measurement


TEST LEVEL

Level	Field Strength V
1	1
2	3
3	10
X	Special


Note*: Where the amplitude of a test level varies over a given frequency range, it changes linearly with respect to the logarithm of the frequency.

BLOCK DIAGRAM OF TEST SETUP

CDN Test:

Clamp Test:

TEST PROCEDURES

- a. The EUT was placed on the insulating support 0.1m above the ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- b. Configure the EUT and support devices as per section 3.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. The disturbance signal described below is injected to EUT through CDN.
- e. The frequency range is swept from 150 KHz to 80 MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- f. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

AC Mains power ports			Analogue/digital data ports		
Frequency ranges (MHz)	Test Level V(r.m.s)	Performance Criterion	I range I		Performance Criterion
0.15 to 80	3	A	0.15 to 80	3	А

TEST RESULTS

PASS

Please refer to the following pages.

	Injected Currents Susceptibility Test Results						
Ambient Condition	Temp.: 25℃	R.H.: 50 % Air Pressure:101 kPa					
	Test Level	3V (r.m.s), 3 to 1V (r.m.s), 1V (r.m.s)					
	Modulation	1kHz sine wave, 80%AN	Л				
Test Specifications	Step Size	1% of preceding frequer	ncy value				
	Dwell Time	1s					
Required Performance Criterion	А						
Test mode	1	-					
Test Port	Frequency (MHz)	Level(V)	Result (Performance Criterion)				
AC Mains	0.15~80	3	A				

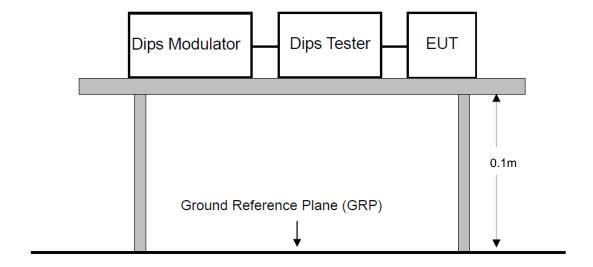
Note : During the test, the EUT did not show any abnormality.

21. Voltage Dips and Interruptions Measurement

TEST LEVEL

Class	Test level and durations for voltage dips (t _s)(50Hz/60Hz)							
Class 1		Case-by-case according to the equipment requirements						
Class 2	0 % during ½ cycle	0 % during 1 cycle	70 %	70 % during 25/30 ^b cycles				
Class 3	0 % during ½ cycle	0 % during 1 cycle	40 % during 70 % during 80 % during 10/12 ^b cycles 25/30 ^b cycles 250/300 ^c cycles					
Class X ^a	X	X	Х	Х	X			

Note: a. To be defined by product committee. For equipment connected directly or indirectly to the public network, the levels must not be less severe than Class 2.


b. "25/30 cycles" means "25 cycles for 50 Hz test" and "30 cycles for 60 Hz test".

Class	Test level and durations for short interruptions (t _s) (50 Hz/60 Hz)							
Class 1	(Case-by-case according to the equipment requirements						
Class 2		0 % dui	ring 250/300b cyc	es				
Class 3		0 % during 250/300b cycles						
Class X ^a	Х	X X X X X						

Note: a. To be defined by product committee. For equipment connected directly or indirectly to the public network, the levels must not be less severe than Class 2.

b. "250/300 cycles" means "250 cycles for 50 Hz test" and "300 cycles for 60 Hz test".

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on the wooded table 0.1m above the ground.
- b. Configure the EUT and support devices as per section 3.
- c. Setting the parameter of tests and then perform the test software of test simulator.
- d. Conditions changes to occur at 0 and 180 degree crossover point of the voltage waveform.
- e. Repeat the above steps in each mode and record the test result.

MINIMUM REQUIREMENT

Description	Level	Cycle	Performance Criterion
Voltage Dips	Residual voltage <5%	0.5	В
Voltage Dips	Residual voltage <5%	1	В
Voltage Dips	Residual voltage 70%	25 for 50Hz	В
Voltage Dips	Residual voltage 70%	30 for 60Hz	В
Voltage Interruptions	Interruptions Residual voltage <5%		С
Voltage Interruptions	Residual voltage <5%	300 for 60Hz	С

TEST RESULTS

PASS

Please refer to the following page.

	Voltage Dips and Interruptions Test Results						
Ambient Condition:	Temp.: 25℃	R.H.: 48 %	Air Pressure: 101 kPa				
	Residual voltage	0%, 70%					
		☑ 0.5	⊠ 1				
	Duration (periods)		☐ 30 for 60Hz				
Test Specifications:			☐ 300 for 60Hz				
	Phase angle	0° and 180°					
	Interval between tests	10s					
	NO. of tests	3 times					
Required Performance Criterion	B & C	B & C					
Test mode:	1						
Test Level	Daration (periodo)		Result				
(Residual voltage) %	50Hz	60Hz	(Performance Criterion)				
0	0.5P	-	А				
0	1P	-	А				
70	25P	- A					
0	250P	-	В				

Note: The charging was stopped during the test, but the EUT can be resumed to normal operation after the test.

22. Measuring Devices and Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2020	1 Year
2.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2020	1 Year
3.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 13, 2020	1 Year
4.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2020	1 Year
5.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

☐ For Conducted Emission Measurement (Wired Network Port)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2020	1 Year
2.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2020	1 Year
3.	AAN	Schwarzbeck	NTFM 8158	CAT5-8158- 0006	Mar. 13, 2020	1 Year
4.	AAN	Schwarzbeck	NTFM 8158	CAT6-8158- 0009	Mar. 13, 2020	1 Year
5.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2020	1 Year
6.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2020	1 Year
2.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2020	1 Year
3.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2020	1 Year
4.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2020	1 Year
5.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2020	1 Year
6.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2020	1 Year
7.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2020	1 Year
8.	Chamber	SAEMC	9*7*7m	N/A	Jun. 20, 2019	2 Year
9.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

□ For Harmonic / Flicker Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Power Frequency Analyzer	California Instruments	PACS-1	72846	Mar. 13, 2020	1 Year
2.	5KVA AC Power Source	California Instruments	5001iX	60137	Mar. 13, 2020	1 Year
3.	Software	California Instruments	CTS 4.2.5	N/A	N/A	N/A

☑ For Electrostatic Discharge Measurement

I	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
	1.	ESD Tester	TESEQ	NSG 437	432	Mar. 23, 2020	1 Year

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Signal Generator	Agilent	N5181A	MY4707016 0	Mar. 13, 2020	1 Year
2.	RF Switch	SKET	N/A	N/A	N/A	N/A
3.	Power Amplifier	SKET	HAP801000M _250W	201804008	N/A	N/A
4.	Power Amplifier	SKET	HAP0103G_7 5W	201804009	N/A	N/A
5.	Power Amplifier	SKET	HAP0306G_5 0W	201804010	N/A	N/A
6.	Power Meter	Agilent	E4419B	GB40201469	Mar. 13, 2020	1 Year
7.	Power Sensor	Agilent	E9304A	MY4149891 9	Mar. 13, 2020	1 Year
8.	Power Sensor	Agilent	E9300A	US39211259	Mar. 13, 2020	1 Year
9.	E-Field Probe	Narda	EP-601	N/A	Mar. 23, 2020	1 Year
10.	Antenna	Schwarzbeck	STLP 9129	9129071	N/A	N/A
11.	Audio Analyzer	Rohde & Schwarz	UPV	100894	Mar. 13, 2020	1 Year
12.	Chamber	Chengyu	7*5*3.5m	N/A	Mar. 26, 2018	3 Year
13.	Test Software	SKET	SKET_RS	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Burst Tester	EM TEST	UCS 500N7	V110410868 3	Mar. 13, 2020	1 Year
2.	Coupling Clamp	EM TEST	HFK	0311-94	Mar. 13, 2020	1 Year
3.	Test Soft	EM TEST	lec. control	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Surge Tester	EM TEST	UCS 500N7	V110410868 3	Mar. 13, 2020	1 Year
2.	Test Soft	EM TEST	lec. control	N/A	N/A	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Signal generator	IFR	2023A	2023051280	Mar. 13, 2020	1 Year
2.	Power Amplifier	SCHAFFNER	CBA9425	1022	Mar. 13, 2020	1 Year
3.	6dB 50Watt Attenuator	SCHAFFNER	ATN6025	N/A	Mar. 13, 2020	1 Year
4.	CDN	Lioncel	CDN-M3-16	0170703	Mar. 13, 2020	1 Year
5.	CDN	Lioncel	CDN-M2-16	0170708	Mar. 13, 2020	1 Year
6.	CDN	CDSI	ADN-M5/AF5	8105001	Mar. 13, 2020	1 Year
7.	EM Clamp	CDSI	EMCL-22	8192007	Mar. 13, 2020	1 Year
8.	Directional Coupler	SCHAFFNER	255	19184	Mar. 13, 2020	1 Year
9.	Audio Analyzer	Rohde & Schwarz	UPV	100894	Mar. 13, 2020	1 Year
10.	Test Software	EZ	EZ_CS	N/A	N/A	N/A

$\ \boxtimes$ For Voltage Dips and Interruptions Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Dips Tester	EM TEST	UCS500N	V110410868 3	Mar. 13, 2020	1 Year
2.	Dips Modulator	EM TEST	V4780S2	0111-11	Mar. 13, 2020	1 Year
3.	Test Soft	EM TEST	lec.control	N/A	N/A	N/A

23. Photographs of Test Configuration

Photo of Conducted Emission Measurement

Photo of Radiated Emission Measurement

Photo of Harmonic/Flicker Measurement

Photo of Electrostatic Discharge Measurement

Photo of Continuous RF Electromagnetic Field Disturbances Measurement

Photo of Electrical Fast Transients / Burst /Surge / Voltage Dips and Interruptions Measurement

Photo of Continuous Induced RF Disturbances Measurement

24. Photographs of the EUT

