

**Shenzhen Global Test Service Co.,Ltd.** No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

| TEST REPORT                                                                               |                                                                                                                                                                                  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| EN 55032<br>Electromagnetic compatibility of multimedia equipment - Emission Requirements |                                                                                                                                                                                  |  |  |  |  |  |
| EN 55035                                                                                  |                                                                                                                                                                                  |  |  |  |  |  |
| Information technology equipment – Immunity characteristics – Limits and methods of       |                                                                                                                                                                                  |  |  |  |  |  |
| measurement<br>Report Reference No GTS20230203015-1-13                                    |                                                                                                                                                                                  |  |  |  |  |  |
| Date of issue                                                                             |                                                                                                                                                                                  |  |  |  |  |  |
|                                                                                           | • •                                                                                                                                                                              |  |  |  |  |  |
| Testing Laboratory Name                                                                   |                                                                                                                                                                                  |  |  |  |  |  |
| Address:                                                                                  | No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong   |  |  |  |  |  |
| Compiled by                                                                               | File administrators Peter Xiao                                                                                                                                                   |  |  |  |  |  |
| (position+printed name+signature):                                                        | FLORN Lino                                                                                                                                                                       |  |  |  |  |  |
| Supervised by                                                                             | Test Engineer Jenny Zeng                                                                                                                                                         |  |  |  |  |  |
| (position+printed name+signature):                                                        | CUBAL TEST Steph                                                                                                                                                                 |  |  |  |  |  |
| Approved by                                                                               | Manager Jason Hu                                                                                                                                                                 |  |  |  |  |  |
| (position+printed name+signature):                                                        | Jayontu                                                                                                                                                                          |  |  |  |  |  |
| Applicant's name:                                                                         | METAVISIO                                                                                                                                                                        |  |  |  |  |  |
| Address:                                                                                  | 80/84 ROUTE DE LA LIBERATION 77340 PONTAULT COMBAULT<br>France                                                                                                                   |  |  |  |  |  |
| Test specification:                                                                       |                                                                                                                                                                                  |  |  |  |  |  |
| Standard:                                                                                 | EN 55032:2015/A11:2020<br>EN 55035:2017/A11:2020<br>EN IEC 61000-3-2:2019/A1:2021<br>EN 61000-3-3:2013/A2:2021/AC:2022-01                                                        |  |  |  |  |  |
| Receiver Date                                                                             | Мау. 06, 2023                                                                                                                                                                    |  |  |  |  |  |
| Test Period                                                                               | May. 06, 2023 - May. 24, 2023                                                                                                                                                    |  |  |  |  |  |
| Test item description:                                                                    | Tablet                                                                                                                                                                           |  |  |  |  |  |
| Trade Mark                                                                                | THOMSON                                                                                                                                                                          |  |  |  |  |  |
| Model/Type reference                                                                      | TEO8M2BK32LTE                                                                                                                                                                    |  |  |  |  |  |
| Listed Models:                                                                            | TEO8M, TEO8M2BL32LTE, TEO8M2SL32LTE,<br>TEO8M2T32LTE, TEO8M4BK64LTE, TEO8M4BL64LTE,<br>TEO8M4SL64LTE, TEO8M4T64LTE, TEO8M2BK16LTE,<br>TEO8M2BL16LTE, TEO8M2SL16LTE, TEO8M2T16LTE |  |  |  |  |  |
| Ratings:                                                                                  | DC 3.7V by battery                                                                                                                                                               |  |  |  |  |  |
|                                                                                           | Recharged by DC 5.0V                                                                                                                                                             |  |  |  |  |  |
| Result:                                                                                   | PASS                                                                                                                                                                             |  |  |  |  |  |
| Shenzhen Global Test Service Co.                                                          | Shenzhen Global Test Service Co., Ltd. All rights reserved.                                                                                                                      |  |  |  |  |  |
| Test Service Co., Ltd. is acknowledged as                                                 | le or in part for non-commercial purposes as long as the Shenzhen Global<br>copyright owner and source of the material. Shenzhen Global Test Service                             |  |  |  |  |  |

Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

# TEST REPORT

| Test Report No. :    | GTS | 620230203015-1-13                                                                                                                                                                | May.25, 2023<br>Date of issue                          |  |
|----------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Equipment under Test | :   | Tablet                                                                                                                                                                           |                                                        |  |
| Model /Type          | :   | TEO8M2BK32LTE                                                                                                                                                                    |                                                        |  |
| Listed model         | :   | TEO8M, TEO8M2BL32LTE, TEO8M2SL32LTE, TEO8M2T32LTE,<br>TEO8M4BK64LTE, TEO8M4BL64LTE, TEO8M4SL64LTE,<br>TEO8M4T64LTE, TEO8M2BK16LTE, TEO8M2BL16LTE,<br>TEO8M2SL16LTE, TEO8M2T16LTE |                                                        |  |
| Applicant            | :   | METAVISIO                                                                                                                                                                        |                                                        |  |
| Address              | :   | 80/84 ROUTE DE LA LIBEF<br>France                                                                                                                                                | RATION 77340 PONTAULT COMBAULT                         |  |
| Manufacturer         | :   | ShenZhen Weihejia Elect                                                                                                                                                          | tronics Technology CO., LTD                            |  |
| Address              | :   | Room 102, No. 9, Xihu Indu<br>Yuanshan Street, Longgang                                                                                                                          | strial Zone, Xikeng Community.<br>  District, Shenzhen |  |

| Test Result | Pass |
|-------------|------|
|-------------|------|

The above equipment has been tested by Shenzhen Global Test Service Co., Ltd., and found compliance with the requirements set forth in the EMC Directive 2014/30/EU technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

# Contents

| 1. TEST SUMMARY                               | 5  |
|-----------------------------------------------|----|
| 2. EUT INFORMATION                            | 6  |
| 2.1. I/O Port Description                     | 6  |
| 2.2. EUT operation mode                       | 6  |
| 2.3. EUT configuration                        | 7  |
| 3. TEST ENVIRONMENT                           | 8  |
| 3.1. Address of the test laboratory           | 8  |
| 3.2. Test Facility                            | 8  |
| 3.3. Test Software                            | 8  |
| 3.4. Statement of the measurement uncertainty | 9  |
| 3.5. Test Site Environmental                  | 10 |
| 3.6. Test Instruments                         |    |
| 4. TEST CONDITIONS AND RESULTS                | 14 |
| 4.1. Conducted Emission                       | 14 |
| 4.1.1 Limits                                  | 14 |
| 4.1.2 Test Configuration                      | 14 |
| 4.1.3 Test Procedure                          |    |
| 4.1.4 Test Results                            | 16 |
| 4.2. CONDUCTED EMISSION (WIRED NETWORK PORT)  |    |
| 4.3. Radiated Emission                        | 19 |
| 4.2.1 Limit                                   |    |
| 4.2.2 Test Configuration                      | 20 |
| 4.2.3 Test Procedure                          |    |
| 4.2.4 Test Results                            | 23 |
| 4.4. Harmonic Current                         | 26 |
| 4.3.1 Limit                                   | 26 |
| 4.3.2 Test Configuration                      | 27 |
| 4.3.3 Test Procedure                          | 27 |
| 4.3.4 Test Results                            | 27 |
| 4.5. Voltage Fluctuation and Flicker          | 28 |
| 4.4.1 Limit                                   | 28 |
| 4.4.2 Test Configuration                      | 28 |
| 4.4.3 Test Procedure                          | 29 |
| 4.4.4 Test Results                            | 29 |
| 4.6. Electrostatic Discharge (ESD)            |    |
| 4.5.1 Test Specification                      |    |
| 4.5.2 Test Configuration                      |    |
| 4.5.3 Test Procedure                          |    |
| 4.5.4 Test Results                            | 31 |
| 4.7. Radiated Electromagnetic Field (RS)      | 32 |
| 4.6.1 Test Specification                      | 32 |
| 4.6.2 Test Configuration                      | 32 |
| 4.6.3 Test Procedure                          |    |
| 4.6.4 Test Results                            | 33 |
| 4.8. Electrical Fast Transient/Burst (EFT)    |    |
| 4.7.1 Test Specification                      |    |
| 4.7.2 Test Configuration                      | 34 |
| 4.7.3 Test Procedure                          |    |
| 4.7.4 Test Results                            | 35 |

| 4.8.1 Test Specification                     |
|----------------------------------------------|
|                                              |
| 4.8.2 Test Configuration                     |
| 4.8.3 Test Procedure                         |
| 4.8.4 Test Results                           |
| 4.10. Conducted Susceptibility (CS)          |
| 4.9.1 Test Specification                     |
| 4.9.2 Test Configuration                     |
| 4.9.3 Test Procedure                         |
| 4.9.4 Test Results                           |
| 4.11. Power Frequency Magnetic Field (PMF)40 |
| 4.10.1 Test Specification40                  |
| 4.10.2 Test Configuration40                  |
| 4.10.3 Test Procedure40                      |
| 4.10.4 Test Results4                         |
| 4.12. Voltage Dips and Interruptions42       |
| 4.11.1 Test Specification42                  |
| 4.11.2 Test Configuration42                  |
| 4.11.3 Test Procedure42                      |
| 4.11.4 Test Results43                        |
| 5. TEST SETUP PHOTOS OF THE EUT              |
| 6. PHOTOS OF THE EUT                         |

# 1. <u>TEST SUMMARY</u>

| Emission                                                     |                                |         |                        |  |  |
|--------------------------------------------------------------|--------------------------------|---------|------------------------|--|--|
| Standard                                                     | ltem                           | Verdict | Remark                 |  |  |
| EN 55032:2015/A11:2020                                       | Conducted Emission             | PASS    | Meet Class B limit     |  |  |
| EN 55052.2015/A11.2020                                       | Radiated Emission              | PASS    | Meet Class B limit     |  |  |
| EN IEC 61000-3-<br>2:2019/A1:2021 Harmonic Current Emissions |                                | N/A     | N/A                    |  |  |
| EN 61000-3-<br>3:2013/A2:2021/AC:2022-<br>01                 | Voltage Fluctuations & Flicker | PASS    | Meets the requirements |  |  |

| Immunity                                                |                                      |        |                                                                                                                                                                     |  |  |
|---------------------------------------------------------|--------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Standard                                                | Item                                 | Result | Remark                                                                                                                                                              |  |  |
| EN 55035:2017/A11:2020<br>EN 61000-4-2: 2009            | ESD                                  | PASS   | Meets the requirements of Criterion B                                                                                                                               |  |  |
| EN 55035:2017/A11:2020<br>EN IEC 61000-4-3:2020         | RS                                   | PASS   | Meets the requirements of Criterion A                                                                                                                               |  |  |
| EN 55035:2017/A11:2020<br>EN 61000-4-4: 2012            | EFT                                  | PASS   | Meets the requirements of Criterion B                                                                                                                               |  |  |
| EN 55035:2017/A11:2020<br>EN 61000-4-<br>5:2014/A1:2017 | Surge                                | PASS   | Meets the requirements of Criterion B                                                                                                                               |  |  |
| EN 55035:2017/A11:2020<br>EN 61000-4-<br>6:2014/AC:2015 | CS                                   | PASS   | Meets the requirements of Criterion A                                                                                                                               |  |  |
| EN 55035:2017/A11:2020<br>EN 61000-4-8:2010             | PMF                                  | PASS   | Meets the requirements of Criterion A                                                                                                                               |  |  |
| EN 55035:2017/A11:2020<br>EN IEC 61000-4-11:2020        | Voltage Dips &<br>Voltage Variations | PASS   | Meets the requirements of<br>Voltage Dips:<br>1) >95% reduction Criterion B<br>2) 30% reduction Criterion C<br>Voltage Interruptions:<br>>95% reduction Criterion C |  |  |

The test results of this report was related only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

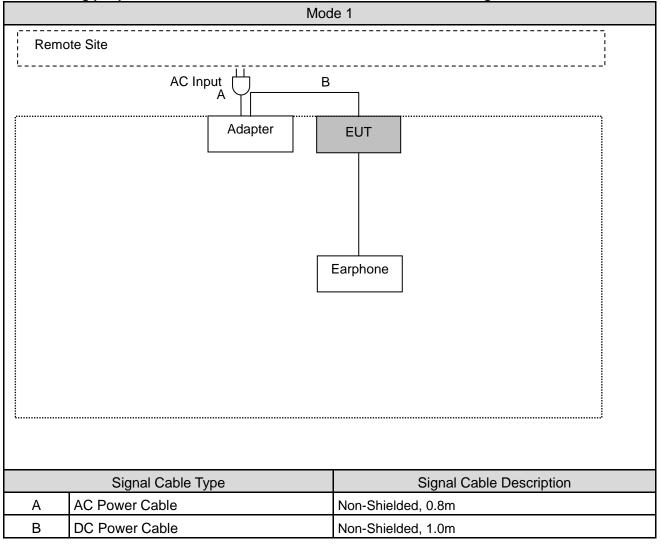
# 2. EUT INFORMATION

## 2.1.I/O Port Description

| I/O Port Types    | Q'TY | Test Description    |
|-------------------|------|---------------------|
| 1). DC IN Port    | 1    | Connect to Adapter  |
| 2). Earphone Port | 1    | Connect to Earphone |

# 2.2. EUT operation mode

| Pre-Test<br>Mode | Mode 1: W<br>Mode 2: Ic        | /orking Mode<br>lle Mode |        |
|------------------|--------------------------------|--------------------------|--------|
|                  | Conducted                      | d Emission               | Mode 1 |
|                  | Radiates                       | Below 1GHz               | Mode 1 |
|                  | Emission                       | Above 1GHz               | Mode 1 |
|                  | Harmonic Current Emissions     |                          | N/A    |
|                  | Voltage Fluctuations & Flicker |                          | Mode 1 |
| Final Test       | ESD                            |                          | Mode 1 |
| Mode             | RS                             |                          | Mode 1 |
|                  | EFT                            |                          | Mode 1 |
|                  | Surge                          |                          | Mode 1 |
|                  | CS                             |                          | Mode 1 |
|                  | PMF                            |                          | Mode 1 |
|                  | Voltage Di<br>Variations       | ps & Voltage             | Mode 1 |


Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

\*\*\*Note:

Pre-test at both voltage AC 120V/60Hz and AC 230V/50Hz, but we only recorded the worst case in this report.

# 2.3. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:



|                                   | Devices Description |                                                   |                 |                  |                    |  |  |  |
|-----------------------------------|---------------------|---------------------------------------------------|-----------------|------------------|--------------------|--|--|--|
| Product Manufacturer Model Number |                     |                                                   |                 | Serial<br>Number | Power Cord         |  |  |  |
| (1)                               | Adapter             | SHENZHEN<br>BAOCHANGTONG<br>TECHNOLOGY<br>CO.,LTD | BCT050200-078OU | N/A              | Non-Shielded, 1.0m |  |  |  |
| (2)                               | Earphone            | SONY                                              | MDR-XB550AP     | N/A              | Non-Shielded, 1.0m |  |  |  |

# 3. <u>TEST ENVIRONMENT</u>

## 3.1. Address of the test laboratory

## Shenzhen Global Test Service Co., Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

# 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

# 3.3. Test Software

| Meas | Measurement Software           |                  |            |  |  |  |
|------|--------------------------------|------------------|------------|--|--|--|
| No.  | Description                    | Software         | Version    |  |  |  |
| 1    | Conducted Emission             | JS32-CE          | Ver2.5     |  |  |  |
| 2    | Radiated Emission _ Below 1GHz | JS32-RE          | Ver2.5.1.8 |  |  |  |
| 3    | Radiated Emission _ Above 1GHz | JS32-RE          | Ver2.5.1.8 |  |  |  |
| 4    | Harmonic Current Emissions     | Harcs            | 4.21.0.0   |  |  |  |
| 5    | Voltage Fluctuations & Flicker | Harcs            | 4.21.0.0   |  |  |  |
| 6    | RS                             | EMC-RS           | 2.0.1.2    |  |  |  |
| 7    | CS                             | IEC/EN 61000-4-6 | V1.1.2     |  |  |  |

# 3.4. Statement of the measurement uncertainty

| Test Item                                                                                                                        | Test Site            | Frequency Range  |            | Uncertainty (dB) |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|------------|------------------|--|
| Conducted Emission                                                                                                               | Conductive Shielding | 9 kHz ~ 150 kHz  |            | 2.7              |  |
| AC Power Port                                                                                                                    |                      | 150 kHz ⁄        | ~ 30 MHz   | 2.7              |  |
| Conducted Emission<br>Telecommunication<br>Port                                                                                  | Room                 | 150 kHz ~ 30 MHz |            | 3.6              |  |
| Radiated Emission                                                                                                                | 966                  | 30 MHz ~         | Horizontal | 5.6              |  |
|                                                                                                                                  |                      | 1000 MHz         | Vertical   | 6.0              |  |
|                                                                                                                                  |                      | 1000 MHz -       | ~ 6000 MHz | 5.2              |  |
| Note: The Vertical and Horizontal measurement uncertainty of 1GHz to 6GHz is evaluated and choose which polarity is worst value. |                      |                  |            |                  |  |

| Те                               | Uncertainty               |          |
|----------------------------------|---------------------------|----------|
| Harmonic Current Emission        |                           | 36 mA/A  |
| Voltage Fluctuations And Flicker |                           | 4.4 mV/V |
|                                  | Voltage                   | 0.86 %   |
| Electrostatic Discharge          | Current                   | 2.5 %    |
|                                  | Timing                    | 6.0 %    |
| Radiated Susceptibility          | 3.2 dB                    |          |
| Electrical Fast Transient/Burst  |                           | 2 %      |
|                                  | Voltage                   | 3 %      |
| Surge                            | Current                   | 3 %      |
|                                  | Timing                    | 3 %      |
| Conducted Supportibility         | CDN                       | 3.8 dB   |
| Conducted Susceptibility         | EM Clamp/Direct Injection | 2.8 dB   |
| Power Frequency Magnetic Field   | 36 mA/A                   |          |
| Voltage Dine and Interruption    | Voltage                   | 1.004 %  |
| Voltage Dips and Interruption    | Timing                    | 1.004 %  |

# 3.5. Test Site Environmental

| Test Item                            | Required (IEC 6            | Actual   |      |
|--------------------------------------|----------------------------|----------|------|
|                                      | Temperature (°C)           | 15-35    | 26   |
| Conducted Emission                   | Humidity (%RH)             | 25-75    | 60   |
|                                      | Barometric pressure (mbar) | 860-1060 | 950  |
|                                      | Temperature (°C)           | 15-35    | 26   |
| Radiated Emission                    | Humidity (%RH)             | 25-75    | 60   |
|                                      | Barometric pressure (mbar) | 860-1060 | 950  |
|                                      | Temperature (°C)           |          | 26.0 |
| Harmonic Current<br>Emissions        | Humidity (%RH)             |          | 60.0 |
| Emissions                            | Barometric pressure (mbar) |          | 950  |
|                                      | Temperature (°C)           |          | 26.0 |
| Voltage Fluctuations &<br>Flicker    | Humidity (%RH)             |          | 60.0 |
|                                      | Barometric pressure (mbar) |          | 950  |
|                                      | Temperature (°C)           | 15-35    | 26.0 |
| ESD                                  | Humidity (%RH)             | 30-60    | 60.0 |
|                                      | Barometric pressure (mbar) | 860-1060 | 950  |
|                                      | Temperature (°C)           |          | 26.0 |
| RS                                   | Humidity (%RH)             |          | 60.0 |
|                                      | Barometric pressure (mbar) |          | 950  |
|                                      | Temperature (°C)           | 15-35    | 26.0 |
| EFT                                  | Humidity (%RH)             | 30-60    | 60.0 |
|                                      | Barometric pressure (mbar) | 860-1060 | 950  |
|                                      | Temperature (°C)           | 15-35    | 26.0 |
| Surge                                | Humidity (%RH)             | 10-75    | 60.0 |
|                                      | Barometric pressure (mbar) | 860-1060 | 950  |
|                                      | Temperature (°C)           |          | 26.0 |
| CS                                   | Humidity (%RH)             |          | 60.0 |
|                                      | Barometric pressure (mbar) |          | 950  |
|                                      | Temperature (°C)           | 15-35    | 26.0 |
| PMF                                  | Humidity (%RH)             | 25-75    | 60.0 |
|                                      | Barometric pressure (mbar) | 860-1060 | 950  |
|                                      | Temperature (°C)           | 15-35    | 26.0 |
| Voltage Dips & Voltage<br>Variations | Humidity (%RH)             | 25-75    | 60.0 |
|                                      | Barometric pressure (mbar) | 860-1060 | 950  |

# **3.6.Test Instruments**

Test Period: May. 07, 2023

| Conducted Emission test site |              |                              |                       |            |             |  |  |
|------------------------------|--------------|------------------------------|-----------------------|------------|-------------|--|--|
| Equipment                    | Manufacturer | Model Number                 | Model Number Serial O |            | Cal. Period |  |  |
| Test Receiver                | R&S          | ESPI 3                       | 101841                | 2022/07/13 | 1 year      |  |  |
| Transient Limiter            | CYBERTEK     | EM5010A                      | E1950100106           | 2022/07/13 | 1 year      |  |  |
| LISN                         | R&S          | ESH2-Z5                      | 893606/008            | 2022/07/13 | 1 year      |  |  |
| LISN                         | CYBERTEK     | EM5040A                      | E1850400105           | 2022/07/13 | 1 year      |  |  |
| ISN                          | SCHWARZBECK  | CAT 3                        | 066                   | 2022/09/09 | 1 year      |  |  |
| ISN                          | SCHWARZBECK  | CAT 5                        | 121                   | 2022/09/09 | 1 year      |  |  |
| ISN                          | SCHWARZBECK  | NTFM                         | 102                   | 2022/09/09 | 1 year      |  |  |
| Test Site                    | XINJU        | Conductive<br>Shielding Room | N/A                   | N.C.R.     |             |  |  |

## Test Period: May. 07, 2023

| 966 Chamber                                |                                    |                                            |          |            |             |  |
|--------------------------------------------|------------------------------------|--------------------------------------------|----------|------------|-------------|--|
| Equipment                                  | Manufacturer                       | Manufacturer Model Number Serial Cal. Date |          | Cal. Date  | Cal. Period |  |
| Amplifier                                  | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | BBV 9743                                   | 202      | 2022/07/13 | 1 year      |  |
| Amplifier                                  | EMCI                               | EMC051845SE                                | 980355   | 2022/07/13 | 1 year      |  |
| Test Receiver                              | R&S                                | ESCI 7                                     | 101102   | 2022/07/13 | 1 year      |  |
| Spectrum Analyzer                          | R&S                                | FSV40-N                                    | 101800   | 2022/07/13 | 1 year      |  |
| Broadband Antenna                          | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | VULB 9163                                  | 00976    | 2022/07/13 | 1 year      |  |
| Double Ridged Horn<br>Antenna<br>(1~18GHz) | SCHWARZBECK<br>MESS-ELEKTRONIK     | BBHA 9120D                                 | 01622    | 2022/09/09 | 1 year      |  |
| Horn Antenna<br>(18GHz~40GHz)              | ETS                                | 3116C                                      | 00086467 | 2022/09/09 | 1 year      |  |
| Test Site                                  | XINJU                              | 966                                        | N/A      | 2021/09/19 | 3 year      |  |

Test Period: May. 07, 2023

| Harmonics Current / Voltage Fluctuation and Flicker test site |                |                      |                         |            |        |  |  |
|---------------------------------------------------------------|----------------|----------------------|-------------------------|------------|--------|--|--|
| Equipment                                                     | Manufacturer   | Cal. Period          |                         |            |        |  |  |
| EMC Immunity<br>Tester                                        | EMC-PARTNER AG | HARMONICS<br>1000    | HAR1000-1P<br>230V-0221 | 2022/07/13 | 1 year |  |  |
| Test Site                                                     | XINJU          | RF Shielding<br>Room | N/A                     | N.C.R.     |        |  |  |

## Test Period: May. 08, 2023

| Electrostatic Discharge test site |                |                                       |                  |             |        |  |  |
|-----------------------------------|----------------|---------------------------------------|------------------|-------------|--------|--|--|
| Equipment                         | Manufacturer   | acturer Model Number Serial Cal. Date |                  | Cal. Period |        |  |  |
| ESD Simulator                     | EMC-PARTNER AG | ESD 3000                              | ESD3000-<br>1680 | 2022/09/09  | 1 year |  |  |
| 0.8m<br>Height Wooden<br>Table    | N/A            | N/A                                   | N/A              | N.C.R.      |        |  |  |
| Test Site                         | EMS Lab        | N/A                                   | N/A              | N.C.R.      |        |  |  |

## Test Period: May. 08, 2023

| Radiated Electromagnetic Field test site |                                    |                     |                                       |            |             |  |  |
|------------------------------------------|------------------------------------|---------------------|---------------------------------------|------------|-------------|--|--|
| Equipment                                | Manufacturer                       | Model Number        | del Number Serial<br>Number Cal. Date |            | Cal. Period |  |  |
| SMB 100A SIGNAL<br>GENERATOR             | R&S                                | SMB100A             | 100724                                | 2022/07/13 | 1 year      |  |  |
| NRP-Z91 POWER<br>SENSOR                  | R&S                                | NRP-Z91             | 100611                                | 2022/07/13 | 1 year      |  |  |
| NRP-Z91 POWER<br>SENSOR                  | R&S                                | NRP-Z91             | 100613                                | 2022/07/13 | 1 year      |  |  |
| NRP POWER<br>METER                       | R&S                                | NRP                 | 101591                                | 2022/07/13 | 1 year      |  |  |
| Solid State Power<br>Amplifier           | R&K                                | GA020M102-<br>5454F | 830140                                | N.C.R.     |             |  |  |
| Direction Coupler                        | WERLATONE                          | C8686-714           | 109646                                | N.C.R.     |             |  |  |
| Signal Generator<br>Module               | R&S                                | SM300 Module        | 102209                                | N.C.R.     |             |  |  |
| RS Amplifier                             | MILMEGA                            | AS0860B-50/50       | 1078855                               | N.C.R.     |             |  |  |
| Broad-Band Horn<br>Antenna               | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | BBHA 9120           | BBHA 9120<br>E388                     | N.C.R.     |             |  |  |
| Test Site                                | XINJU                              | 966                 | N/A                                   | 2021/09/19 | 3 years     |  |  |

## Test Period: May. 08, 2023

| Electrical Fast Transient/Burst / Surge / Power Frequency Magnetic Field / |                                                                                                     |                   |                           |            |        |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------|--------|--|
| Equipment                                                                  | Voltage Dips and Interruption test site   Manufacturer Model Number Serial<br>Number Cal. Date Cal. |                   |                           |            |        |  |
| EMC Immunity<br>Tester                                                     | EMC-PARTNER AG                                                                                      | HARMONICS<br>1000 | HAR1000-1P<br>230V-0221   | 2022/09/09 | 1 year |  |
| Magnetic Field<br>Antenna                                                  | EMC-PARTNER AG                                                                                      | MF1000-1          | 155                       | 2022/09/09 | 1 year |  |
| EMC Immunity<br>Tester                                                     | EMC-PARTNER AG                                                                                      | TRANSIENT<br>3000 | TRA3000 F5-<br>S-D-V-1527 | 2022/09/09 | 1 year |  |
| Coupling Clamp                                                             | EMC-PARTNER AG                                                                                      | CN-EFT1000        | CN-EFT1000-<br>1574       | 2022/09/09 | 1 year |  |
| Signal Line Coupling<br>Network                                            | EMC-PARTNER AG                                                                                      | CN-R40C05         | CN-R40C05-<br>1513        | 2022/09/09 | 1 year |  |
| Magnetic Field<br>Antenna                                                  | EMC-PARTNER AG                                                                                      | MF1000-1          | 155                       | 2022/09/09 | 1 year |  |
| Test Site                                                                  | EMS Lab                                                                                             | N/A               | N/A                       | N.C.R.     |        |  |

## Test Period: May. 08, 2023

| Conducted disturbances induced by radio-frequency fields |              |              |                  |            |             |  |  |
|----------------------------------------------------------|--------------|--------------|------------------|------------|-------------|--|--|
| Equipment                                                | Manufacturer | Model Number | Serial<br>Number | Cal. Date  | Cal. Period |  |  |
| CS Test system                                           | Frankonia    | CIT-10-75    | 126B1333         | 2022/09/09 | 1 year      |  |  |
| 6dB Attenuator                                           | Frankonia    | 75-A-FFN-06  | 1509             | 2022/09/09 | 1 year      |  |  |
| CDN                                                      | Frankonia    | M2+M3        | A2210239         | 2022/09/09 | 1 year      |  |  |
| Power Clamp                                              | Frankonia    | EMCL-20      | 132A1216         | 2022/09/09 | 1 year      |  |  |

The calibration interval was one year.

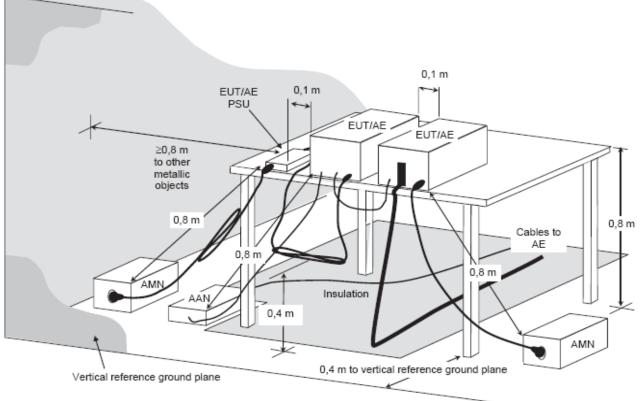
# 4. TEST CONDITIONS AND RESULTS

# **4.1.Conducted Emission**

## 4.1.1 Limits

## A.C. Mains Conducted Interference Limit

| Frequency  | Frequency Class A (dBuV) |         | Class B (dBuV) |         |  |
|------------|--------------------------|---------|----------------|---------|--|
| (MHz)      | Quasi-peak               | Average | Quasi-peak     | Average |  |
| 0.15 - 0.5 | 79                       | 66      | 66 - 56        | 56 - 46 |  |
| 0.50 - 5.0 | 73                       | 60      | 56             | 46      |  |
| 5.0 - 30.0 | 73                       | 60      | 60             | 50      |  |


Note: (1) The lower limit shall apply at the transition frequencies.

- (2) The limit decreases in line with the logarithm of the frequency in the range 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

## Telecommunication Port Asymmetric mode Conducted Interference Limit

|                      | Class A Equipment |                |          |                  |          | Class B Equipment |               |                 |  |
|----------------------|-------------------|----------------|----------|------------------|----------|-------------------|---------------|-----------------|--|
| Requirement<br>(MHz) |                   | e Limit<br>μV) |          | nt Limit<br>3µA) |          | e Limit<br>sµV)   | Currer<br>(dB | nt Limit<br>μΑ) |  |
|                      | QP                | Avg.           | QP       | Avg.             | QP       | Avg.              | QP            | Avg.            |  |
| 0.15 to 0.50         | 97 to 87          | 84 to 74       | 53 to 43 | 40 to 30         | 84 to 74 | 74 to 64          | 40 to 30      | 30 to 20        |  |
| 0.50 to 30           | 87                | 74             | 43       | 30               | 74       | 64                | 30            | 20              |  |

# 4.1.2 Test Configuration



AMNs bonded to a reference ground plane

## 4.1.3 Test Procedure

## A.C. Mains Conducted Interference

## Procedure of Preliminary Test

The EUT and support equipment, if needed, were set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55032 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane, which has a less than 15 cm non-conductive covering to insulate the EUT from the ground plane.

All I/O cables were positioned to simulate typical actual usage as per EN 55032.

The EUT installed by AC main power, through a Line Impedance Stabilization Network (LISN), which was supplied power source and was grounded to the ground plane.

All support equipment power by a second LISN.

The test program of the EUT was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in Item 3.1 were scanned during the preliminary test.

After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.

The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

## Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

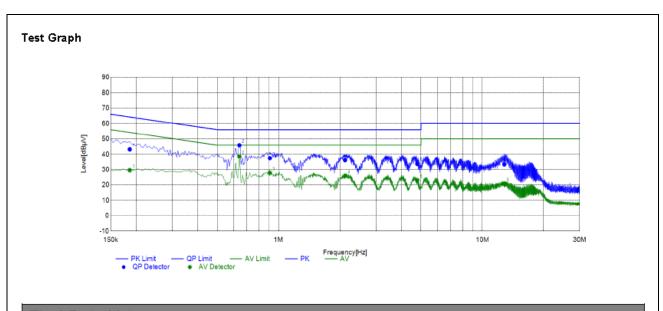
The test data of the worst-case condition(s) was recorded.

Cables connecting to AE located outside the measurement area shall drop directly to, but be insulated from, the RGP shall be used thickness of the insulation and shall not be more than 150 mm. However, cables which would normally be bonded to ground should be bonded to the RGP in accordance with normal practice or the manufacturer's recommendation

## **Telecommunication Port Conducted Interference**

Selecting ISN for unscreened cable and screened cable to make measurement and Current probe for coaxial cable.

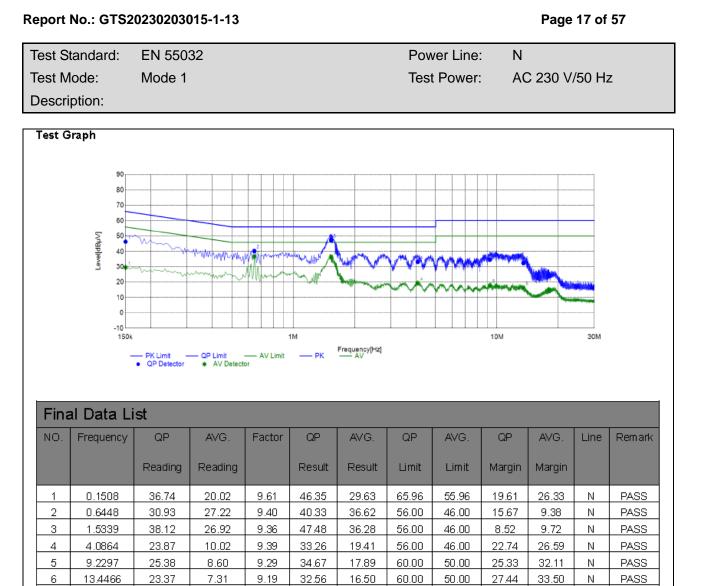
The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.


Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

In case of measuring on the screened cable, the current limit shall be applied; otherwise the voltage limit should be applied.

# 4.1.4 Test Results


| Test Standard: | EN 55032 | Power Line: | L1             |
|----------------|----------|-------------|----------------|
| Test Mode:     | Mode 1   | Test Power: | AC 230 V/50 Hz |
| Description:   |          |             |                |



| Fina | al Data Li | st      |         |        |        |        |       |       |        |        |      |        |
|------|------------|---------|---------|--------|--------|--------|-------|-------|--------|--------|------|--------|
| NO.  | Frequency  | QP      | AVG.    | Factor | QP     | AVG.   | QP    | AVG.  | QP     | AVG.   | Line | Remark |
|      |            | Reading | Reading |        | Result | Result | Limit | Limit | Margin | Margin |      |        |
| 1    | 0.1863     | 33.61   | 20.06   | 9.58   | 43.19  | 29.64  | 64.20 | 54.20 | 21.01  | 24.56  | L1   | PASS   |
| 2    | 0.6421     | 36.28   | 28.90   | 9.57   | 45.85  | 38.47  | 56.00 | 46.00 | 10.15  | 7.53   | L1   | PASS   |
| 3    | 0.9062     | 28.12   | 18.52   | 9.37   | 37.49  | 27.89  | 56.00 | 46.00 | 18.51  | 18.11  | L1   | PASS   |
| 4    | 2.1223     | 26.82   | 16.67   | 9.36   | 36.18  | 26.03  | 56.00 | 46.00 | 19.82  | 19.97  | L1   | PASS   |
| 5    | 4.7950     | 24.45   | 13.75   | 9.37   | 33.82  | 23.12  | 56.00 | 46.00 | 22.18  | 22.88  | L1   | PASS   |
| 6    | 12.8109    | 24.31   | 11.64   | 9.17   | 33.48  | 20.81  | 60.00 | 50.00 | 26.52  | 29.19  | L1   | PASS   |

Note: 1. Result (dB $\mu$ V) = Reading (dB $\mu$ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).



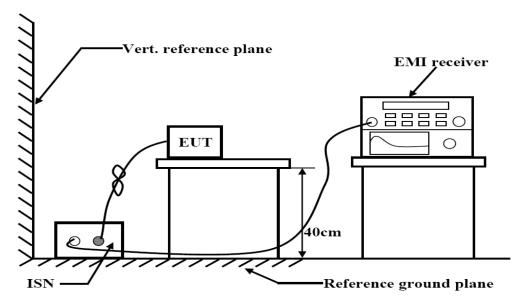
Note: 1. Result ( $dB\mu V$ ) = Reading ( $dB\mu V$ ) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

\*\*\*Note:

Pre-test at both voltage AC 120V/60Hz and AC 230V/50Hz, but we only recorded the worst case in this report.

# 4.2. CONDUCTED EMISSION (WIRED NETWORK PORT)


### Conducted Emission Limit(Wired Network Port)

| Limits for asymmetric mode conducted emissions                                                   |            |              |                        |           |  |  |
|--------------------------------------------------------------------------------------------------|------------|--------------|------------------------|-----------|--|--|
|                                                                                                  | Class B vo | ltage limits | Class B current limits |           |  |  |
| Frequency                                                                                        | (dB        | μV)          | (dBµA)                 |           |  |  |
| (MHz)                                                                                            | Quasi-peak | Average      | Quasi-peak             | Average   |  |  |
|                                                                                                  | Level      | Level        | Level                  | Level     |  |  |
| 0.15 ~ 0.50                                                                                      | 84.0~74.0  | 74.0~64.0    | 40.0~30.0              | 30.0~20.0 |  |  |
| 0.50 ~ 30.00                                                                                     | 74.0       | 64.0         | 30.0                   | 20.0      |  |  |
| NOTE 1 The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to |            |              |                        |           |  |  |

NOTE 1-The limits decrease linearly with the logarithm of the frequency in the range 0,15 MHz to 0,5 MHz.

NOTE 2-The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of  $150\Omega$  to the telecommunication port under test (conversion factor is 20 log10 150 / I = 44 dB).

## **Test Configuration**



## **EMI Test Receiver Setup**

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Receiver Parameter     | Setting        |
|------------------------|----------------|
| Attenuation            | Auto           |
| Start ~ Stop Frequency | 150KHz ~ 30MHz |
| (IF)RBW                | 9kHz           |

All data was recorded in the Quasi-peak and average detection mode.

## **Test Procedure**

Not applicable.

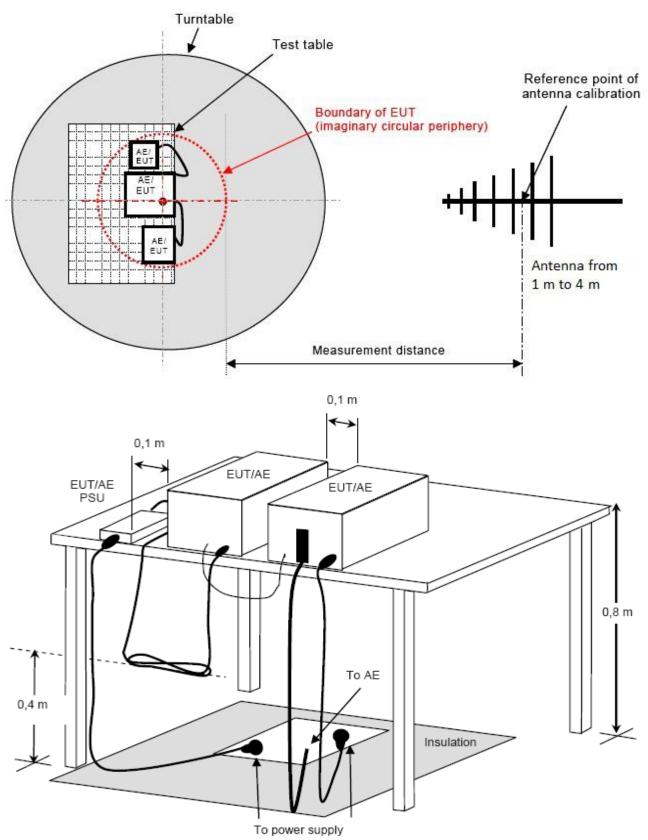
# 4.3. Radiated Emission

## 4.2.1 Limit

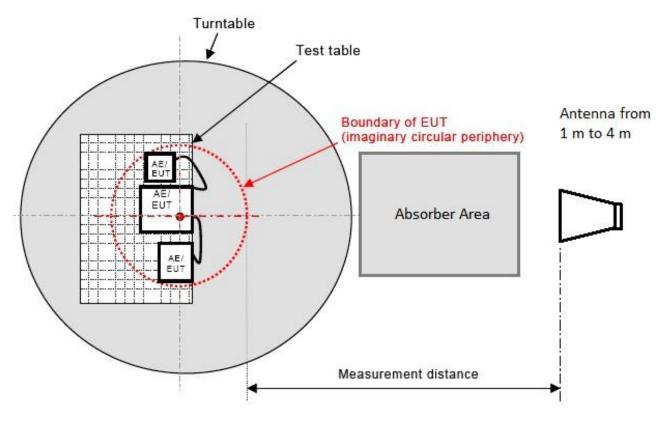
| Frequency  | dBuV/m (Distance 3 m) |         |  |  |  |
|------------|-----------------------|---------|--|--|--|
| (MHz)      | Class A               | Class B |  |  |  |
| 30 ~ 230   | 50                    | 40      |  |  |  |
| 230 ~ 1000 | 57                    | 47      |  |  |  |

Note: The lower limit shall apply at the transition frequencies.

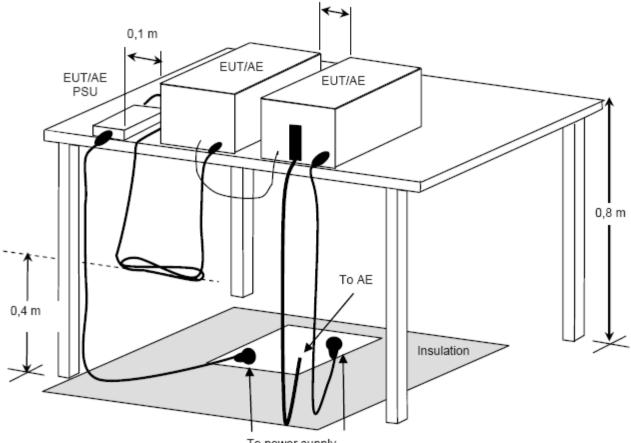
| _                  | dBuV/m (Distance 3 m) |      |         |      |  |  |  |
|--------------------|-----------------------|------|---------|------|--|--|--|
| Frequency<br>(MHz) | Clas                  | ss A | Class B |      |  |  |  |
| ()                 | Average               | Peak | Average | Peak |  |  |  |
| 1000 ~ 3000        | 56                    | 76   | 50      | 70   |  |  |  |
| 3000 ~ 6000        | 60                    | 80   | 54      | 74   |  |  |  |


Note: The lower limit shall apply at the transition frequencies.

## According to EN55032 the measurement frequency range is shown in the following table:


| Highest frequency generated or used within the EUT<br>or on which the EUT operates or tunes<br>(MHz) | Upper frequency of measurement range<br>(MHz)                  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Less than 108                                                                                        | 1000                                                           |
| 108-500                                                                                              | 2000                                                           |
| 500-1000                                                                                             | 5000                                                           |
| Above 1000                                                                                           | 5 times of the highest frequency or 6GHz,<br>whichever is less |

# 4.2.2 Test Configuration


Below 1GHz



## ■ Above 1GHz







To power supply

## 4.2.3 Test Procedure

## Procedure of Preliminary Test.

The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a less than 150 mm non-conductive covering to insulate the EUT from the ground plane.

Support equipment, if needed, was placed as per EN 55032.

All I/O cables were positioned to simulate typical usage as per EN 55032.

The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.

The antenna was placed at 3 or 10 meter away from the EUT as stated in EN 55032 Annex C.2.2.4 Figure C.1 and Annex D Table D.1. The antenna connected to the Spectrum Analyzer via a cable and at times a preamplifier would be used.

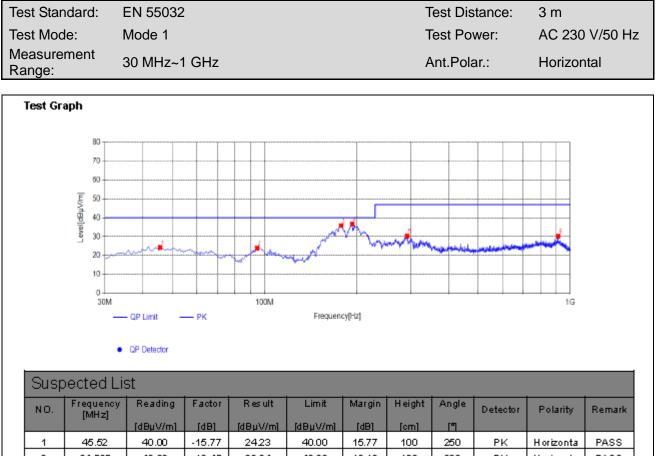
The Analyzer / Receiver quickly scanned from 30MHz to 6GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level (For Below 1GHz) and keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response (For Above 1GHz).

The test mode(s) described in Item 3.1 were scanned during the preliminary test:

After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level. The worst configuration of EUT and cable, antenna position, polarization and turntable position of the above highest emission levels were recorded for the final test.

## Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.


The Analyzer / Receiver scanned from 30MHz to 6000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and Q.P. (For Below 1GHz) or Peak/Average (For Above 1GHz) reading is presented.

Cables connecting to AE located outside the measurement area shall drop directly to, but be insulated from, the RGP (or turntable where applicable), and then be routed directly to the place where they leave the test site. The thickness of the insulation shall not be more than 150 mm. However, cables which would normally be bonded to ground should be bonded to the RGP in accordance with normal practice or the manufacturer's recommendation

The test data of the worst-case condition(s) was recorded.

# 4.2.4 Test Results



| 1 | 40.52   | 40.00 | -10.77 | Z4Z3  | 40.00 | 10.77 | 100 | 200 | I PK | Horizonta | PASS |
|---|---------|-------|--------|-------|-------|-------|-----|-----|------|-----------|------|
| 2 | 94.505  | 42.29 | -18.45 | 23.84 | 40.00 | 16.16 | 100 | 338 | PK   | Horizonta | PASS |
| 3 | 177.925 | 56.26 | -20.43 | 35,83 | 40.00 | 4.17  | 100 | 318 | РК   | Horizonta | PASS |
| 4 | 193.445 | 55.75 | -19.01 | 36.74 | 40.00 | 326   | 100 | 325 | РК   | Horizonta | PASS |
| 5 | 292.87  | 47.24 | -16.94 | 30.30 | 47.00 | 16.70 | 100 | 113 | РК   | Horizonta | PASS |
| 6 | 913.185 | 37.72 | -7.49  | 30.23 | 47.00 | 16.77 | 100 | 139 | PK   | Horizonta | PASS |

Note:1. Result (dB $\mu$ V/m) = Reading(dB $\mu$ V/m) + Factor (dB).

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

### Report No.: GTS20230203015-1-13

| Test Standard:        | EN 55032     | Test Distance: | 3 m            |
|-----------------------|--------------|----------------|----------------|
| Test Mode:            | Mode 1       | Test Power:    | AC 230 V/50 Hz |
| Measurement<br>Range: | 30 MHz~1 GHz | Ant.Polar.:    | Vertical       |



### Suspected List Frequency [MHz] Angle Reading Factor Result Limit Margin Height NO. Detector Polarity Remark [dB] [dB] [dBµV/m] [dBµV/m] [dBµV/m] [cm] I۳ 55.00 36.30 40.00 ΡK Vertical PASS 1 35.82 -18.70 3.70 100 65 26,94 2 58.675 43.09 -16.15 40.00 13.06 100 140 ΡK Vertical PASS 47.14 -19.41 27.73 40.00 12.27 100 PK PASS 3 89.655 290 Vertical 4 177.925 53.42 -20.43 32,99 40.00 7.01 100 352 PK Vertical PASS 20.34 ΡK PASS 5 288.02 43.64 -16.98 26.66 47.00 100 270 Vertical 6 617.82 39.78 - 11.29 28.49 47.00 18.51 100 205 ΡK Vertical PASS

Note:1. Result (dB $\mu$ V/m) = Reading(dB $\mu$ V/m) + Factor (dB).

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

| Test Mode: TM1(above 1GHz) | Test Distance: 3m    |
|----------------------------|----------------------|
| Test voltage: AC 230V/50Hz | Test Results: Passed |
| Detector Function: Peak+AV |                      |

| Frequency MHz | Emission Level<br>dBµV/m |       | Limits dBµV/m |       | Margin dBµV/m |        | Polarization |  |
|---------------|--------------------------|-------|---------------|-------|---------------|--------|--------------|--|
|               | Peak                     | AV    | Peak          | AV    | Peak          | AV     |              |  |
| 1285.20       | 54.65                    | 37.94 | 70.00         | 50.00 | -15.35        | -12.06 | н            |  |
| 1833.49       | 57.04                    | 32.78 | 70.00         | 50.00 | -12.96        | -17.22 | н            |  |
| 2157.97       | 53.72                    | 36.75 | 70.00         | 50.00 | -16.28        | -13.25 | н            |  |
| 3251.53       | 53.98                    | 40.07 | 74.00         | 54.00 | -20.02        | -13.93 | н            |  |
| 4479.27       | 52.39                    | 34.43 | 74.00         | 54.00 | -21.61        | -19.57 | н            |  |
| 5700.33       | 52.78                    | 33.69 | 74.00         | 54.00 | -21.22        | -20.31 | н            |  |
| 1285.83       | 54.72                    | 38.02 | 70.00         | 50.00 | -15.28        | -11.98 | V            |  |
| 1829.70       | 57.51                    | 32.19 | 70.00         | 50.00 | -12.49        | -17.81 | V            |  |
| 2158.79       | 53.27                    | 37.11 | 70.00         | 50.00 | -16.73        | -12.89 | V            |  |
| 3253.59       | 53.06                    | 40.61 | 74.00         | 54.00 | -20.94        | -13.39 | V            |  |
| 4476.09       | 53.28                    | 34.85 | 74.00         | 54.00 | -20.72        | -19.15 | V            |  |
| 5703.79       | 52.96                    | 33.52 | 74.00         | 54.00 | -21.04        | -20.48 | V            |  |

## \*\*\*Note:

Pre-test at both voltage AC 120V/60Hz and AC 230V/50Hz, but we only recorded the worst case in this report.

## **4.4. Harmonic Current**

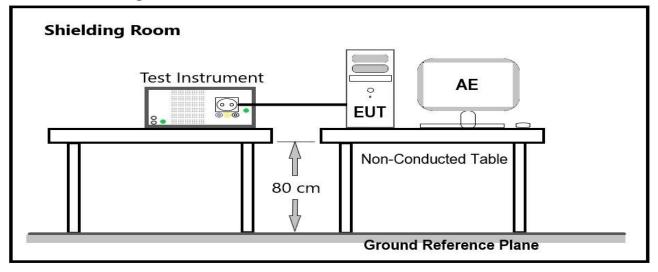
## 4.3.1 Limit

Class A Harmonics Currents

| Harmonics Order   | Maximum Permissible<br>harmonic current | Harmonics Order  | Maximum Permissible<br>harmonic current |
|-------------------|-----------------------------------------|------------------|-----------------------------------------|
| n                 | (A)                                     | n                | (A)                                     |
| Odd harmo         | nics                                    | Even ha          | rmonics                                 |
| 3                 | 2.30                                    | 2                | 1.08                                    |
| 5                 | 1.14                                    | 4                | 0.43                                    |
| 7                 | 0.77                                    | 6                | 0.30                                    |
| 9                 | 0.40                                    | $8 \le n \le 40$ | 0.23 * 8/n                              |
| 11                | 0.33                                    |                  |                                         |
| 13                | 0.21                                    |                  |                                         |
| $15 \le n \le 39$ | 0.15 * 15/n                             |                  |                                         |

## Class B Harmonics Currents

For Class B equipment, the harmonic of the input current shall not exceed the maximum permissible values given in table which is the limit of Class A multiplied by a factor of 1.5.


### **Class C Harmonics Currents**

| Harmonics Order                             | Maximum Permissible harmonic current<br>Expressed as a percentage of the input current at the fundamental frequency |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| n                                           | (%)                                                                                                                 |  |  |  |  |
| 2                                           | 2                                                                                                                   |  |  |  |  |
| 3                                           | $30 \cdot \lambda^*$                                                                                                |  |  |  |  |
| 5                                           | 10                                                                                                                  |  |  |  |  |
| 7                                           | 7                                                                                                                   |  |  |  |  |
| 9                                           | 5                                                                                                                   |  |  |  |  |
| $11 \le n \le 39$<br>(odd harmonics only)   | 3                                                                                                                   |  |  |  |  |
| $\star \lambda$ is the circuit power factor |                                                                                                                     |  |  |  |  |

### **Class D Harmonics Currents**

| Harmonics Order                        | Maximum Permissible harmonic<br>current per watt | Maximum Permissible<br>harmonic current |
|----------------------------------------|--------------------------------------------------|-----------------------------------------|
| n                                      | (mA/W)                                           | (A)                                     |
| 3                                      | 3.4                                              | 2.30                                    |
| 5                                      | 1.9                                              | 1.14                                    |
| 7                                      | 1.0                                              | 0.77                                    |
| 9                                      | 0.5                                              | 0.40                                    |
| 11                                     | 0.35                                             | 0.33                                    |
| $11 \le n \le 39$ (odd harmonics only) | 3.85/n                                           | See limit of Class A                    |

## 4.3.2 Test Configuration



## 4.3.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and the EUT is supplied in series with power analyzer from a power source having the same normal voltage and frequency as the rated supply voltage and the equipment under test. And the rated voltage at the supply voltage of EUT of 0.94 times and 1.06 times shall be performed.

A definition of the normal load or of the conditions for adequate heat discharge can usually be found in the EN publication corresponding to the equipment under test.

Equipment may have several separately controlled circuits. Each circuit is considered as a single piece of equipment if it can be operated independently and separately from the other circuits.

# 4.3.4 Test Results

Not applicable to this device (The product without test since the rating power of EUT is less than 75W).

# 4.5. Voltage Fluctuation and Flicker

## 4.4.1 Limit

The following limits apply:

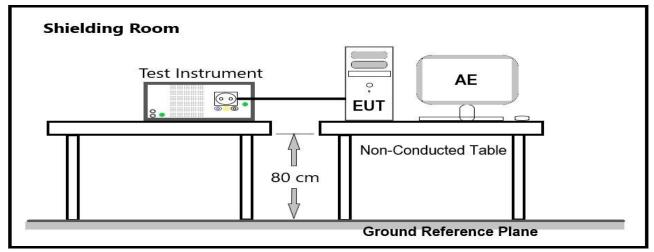
- -- the value of  $P_{st}$  shall not be greater than 1.0;
- -- the value of P<sub>lt</sub> shall not be greater than 0.65;
- --T<sub>max</sub>, the accumulated time value of d(t) with a deviation exceeding 3,3 % during a single voltage change at the EUT terminals, shall not exceed 500 ms;
- -- the relative steady-state voltage change, d\_c, shall not exceed 3.3  $\,\%;$

-- the maximum relative voltage change,  $d_{max}$ , shall not exceed;

- a) 4 % without additional conditions;
- b) 6 % for equipment which is:

-- switched manually, or

-- switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.


Note: The cycling frequency will be further limited by the  $P_{st}$  and  $P_{1t}$  limit.

For example: a  $d_{max}$  of 6% producing a rectangular voltage change characteristic twice per hour will give a  $P_{1t}$  of about 0.65.

c) 7 % for equipment which is:

-- attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or -- switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

 $P_{st}$  and  $P_{1t}$  requirements shall not be applied to voltage changes caused by manual switching.



## 4.4.2 Test Configuration

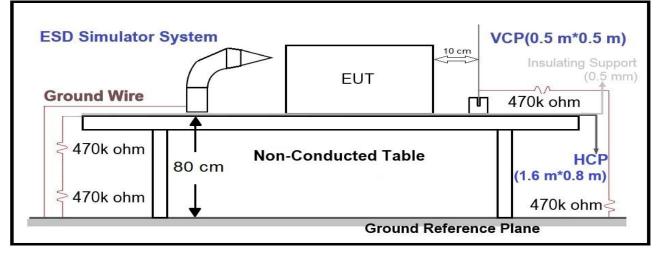
## 4.4.3 Test Procedure

The EUT is supplied in series with power analyzer from a power source having the same normal voltage and frequency as the rated supply voltage and the equipment under test. And the rated voltage at the supply voltage of EUT of 0.94 times and 1.06 times shall be performed.

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

# 4.4.4 Test Results Maximum Flicker results


|          | EUT values | Limit | Result |
|----------|------------|-------|--------|
| Pst      | 0.084      | 1.00  | PASS   |
| Plt      | 0.089      | 0.65  | PASS   |
| dc [%]   | 0.245      | 3.30  | PASS   |
| dmax [%] | 0.625      | 4.00  | PASS   |
| dt [s]   | 0.077      | 0.50  | PASS   |

# 4.6. Electrostatic Discharge (ESD)

## 4.5.1 Test Specification

| EN 61000-4-2            |                       |                      |   |  |  |  |  |
|-------------------------|-----------------------|----------------------|---|--|--|--|--|
| Environmental Phenomena | Performance Criterion |                      |   |  |  |  |  |
| Enclosure Port          |                       |                      |   |  |  |  |  |
| Standard requirement    | kV                    | ±8 Air Discharge     |   |  |  |  |  |
| Electrostatic Discharge | (Charge<br>Voltage)   | ±6 Contact Discharge | В |  |  |  |  |

# 4.5.2 Test Configuration



# 4.5.3 Test Procedure

## The basic test procedure was in accordance with EN 61000-4-2:

IEC 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.6 by 0.8-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

## Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

## Contact Discharge:

All the procedure shall be same as Section 8.3.1 of IEC 61000-4-2, except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

## Indirect discharge for horizontal coupling plane

At least 50 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1 m from the EUT and with the discharge electrode touching the coupling plane.

## Indirect discharge for vertical coupling plane

At least 50 single discharges shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions  $0.5m \times 0.5m$ , is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

# 4.5.4 Test Results

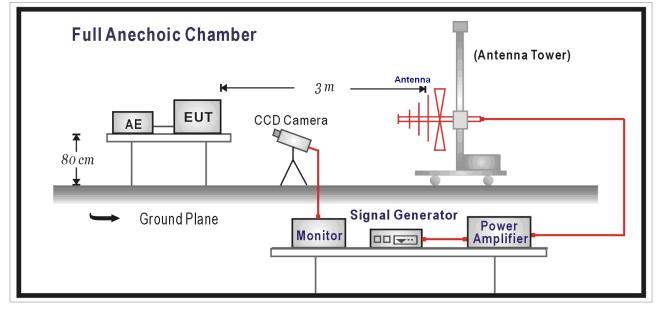
| Test Mod      | Test Mode: Mode 1                        |             |                    |                    |          |                    |             |                                                                                                               |                      |                  |                    |      |                 |
|---------------|------------------------------------------|-------------|--------------------|--------------------|----------|--------------------|-------------|---------------------------------------------------------------------------------------------------------------|----------------------|------------------|--------------------|------|-----------------|
|               | Air Discharge                            |             |                    |                    |          |                    |             |                                                                                                               |                      |                  |                    |      |                 |
| Test          |                                          |             |                    |                    | Test Le  | vels               |             |                                                                                                               |                      |                  |                    | Ver  | dict            |
| Points        | ±2<br>kV                                 |             | ormance<br>terion  | $\pm 4 \text{ kV}$ | Crite    | mance<br>erion     | ± 8 k       | <v p<="" td=""><td>erformai<br/>Criterio</td><td></td><td>Pass</td><td>Fail</td><td>Observatio<br/>n</td></v> | erformai<br>Criterio |                  | Pass               | Fail | Observatio<br>n |
| Earphon       | e 🖂                                      | ×Α          | В                  | $\boxtimes$        | ΜA       | □В                 | $\square$   |                                                                                                               | 3a [                 | B                | $\square$          |      | Note2           |
| DC IN<br>Port | $\boxtimes$                              | A           | □В                 | $\square$          | A        | □В                 | $\boxtimes$ |                                                                                                               | ]A [                 | ]В               | $\square$          |      | Note2           |
| Key           | $\boxtimes$                              | ×Α          | В                  | $\boxtimes$        | ⊠Α       | □В                 | $\boxtimes$ |                                                                                                               | ]A [                 | _В               | $\boxtimes$        |      | Note1           |
| Shell         | $\boxtimes$                              | ΜA          | В                  | $\boxtimes$        | ΜA       | □В                 | $\boxtimes$ |                                                                                                               | ]A [                 | _B               | $\boxtimes$        |      | Note1           |
| Earphon       | e 🖂                                      | ×Α          | В                  | $\boxtimes$        | ⊠Α       | □В                 | $\square$   |                                                                                                               | A [                  | В                | $\square$          |      | Note2           |
| Display       | $\square$                                | $\square A$ | В                  | $\boxtimes$        | ⊠Α       | □В                 | $\square$   |                                                                                                               | 3a [                 | В                | $\square$          |      | Note2           |
|               |                                          |             |                    |                    | rge To H | Iorizon            | al Co       | oupling                                                                                                       | Plane                |                  |                    |      |                 |
| Side of       |                                          |             | Tes                | t Level            |          |                    |             | Verdict                                                                                                       |                      |                  |                    |      |                 |
| EUT           | ± 2                                      | kV          | $\pm 4 \text{ kV}$ | ±                  | 6 kV     | ±84                | ۲V          | Pass                                                                                                          | Fail                 |                  | erforma<br>Criteri |      | Observati<br>on |
| Front         | $\bowtie$                                | 3           | $\boxtimes$        |                    |          |                    |             | $\boxtimes$                                                                                                   |                      | _                | A                  | □В   | Note1           |
| Back          | $\ge$                                    | _           | $\boxtimes$        |                    |          |                    |             | $\boxtimes$                                                                                                   |                      | _                | A                  | □В   | Note1           |
| Left          | $\geq$                                   |             | $\boxtimes$        |                    |          |                    |             | $\boxtimes$                                                                                                   |                      | _                | A                  | □В   | Note1           |
| Right         | $\bowtie$                                | 3           | $\boxtimes$        |                    |          |                    |             | $\boxtimes$                                                                                                   |                      | $\square$        | A                  | В    | Note1           |
|               |                                          |             |                    |                    | arge To  | Vertica            | l Cou       | ipling F                                                                                                      | Plane                |                  |                    |      |                 |
| Side of       |                                          |             | Tes                | t Level            | S        |                    |             |                                                                                                               |                      |                  | Verdict            |      |                 |
| EUT           | ± 2 kV   ± 4 kV   ± 6 kV   ± 8 kV   Pass |             |                    | Fail               | P        | erforma<br>Criteri |             | Observati<br>on                                                                                               |                      |                  |                    |      |                 |
| Front         | $\bowtie$                                | 3           | $\boxtimes$        |                    |          |                    |             | $\boxtimes$                                                                                                   |                      | $\square$        | A                  | □В   | Note1           |
| Back          | $\bowtie$                                | 3           | $\boxtimes$        |                    |          |                    |             | $\boxtimes$                                                                                                   |                      |                  | A                  | В    | Note1           |
| Left          | $\geq$                                   | _           | $\boxtimes$        |                    |          |                    |             | $\square$                                                                                                     |                      | $\triangleright$ | A                  | В    | Note1           |
| Right         | $\geq$                                   | 3           | $\boxtimes$        |                    |          |                    |             | $\boxtimes$                                                                                                   |                      |                  | A                  | В    | Note1           |

Note1: Criterion A: There was no change compared with initial operation during the test.

Note2: Criterion A: There was no change compared with initial operation during the test.

Criterion B: The output sound and video to Displayer on affected and noise display appears on the screen, can be self recover.

# 4.7. Radiated Electromagnetic Field (RS)


## 4.6.1 Test Specification

| EN 61000-4-3                                    |                            |                                    |                          |  |  |  |  |
|-------------------------------------------------|----------------------------|------------------------------------|--------------------------|--|--|--|--|
| Environmental Phenomena                         | Units                      | Test Specification                 | Performance<br>Criterion |  |  |  |  |
| Enclosure Port                                  |                            |                                    |                          |  |  |  |  |
| Test Frequency Range                            | MHz                        | 80-1000, 1800, 2600, 3500,<br>5000 |                          |  |  |  |  |
| RF Electromagnetic Field<br>Amplitude Modulated | V/m<br>(Un-modulated, rms) | 3                                  | A                        |  |  |  |  |
|                                                 | % AM (1kHz)                | 80                                 |                          |  |  |  |  |

EUT tested in accordance with the specifications given by the standard of EN 61000-4-3.

| Sweeping time of radiated | : 0.0015 decade/s |
|---------------------------|-------------------|
| Dwell time                | : 1 Second        |

# 4.6.2 Test Configuration



# 4.6.3 Test Procedure

The test procedure was in accordance with EN 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1 GHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10 -3 decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

# 4.6.4 Test Results

| Test Mode:         | Mode 1   |                         |                          |         |
|--------------------|----------|-------------------------|--------------------------|---------|
| Frequency<br>(MHz) | Polarity | Field Strength<br>(V/m) | Performance<br>Criterion | Verdict |
| 80 ~ 1000          | Н        | 3                       | ⊠A □B                    | PASS    |
| 80 ~ 1000          | V        | 3                       | ⊠A □B                    | PASS    |
| 1800               | Н        | 3                       | ⊠A □B                    | PASS    |
| 1800               | V        | 3                       | ⊠A □B                    | PASS    |
| 2600               | Н        | 3                       | ⊠A □B                    | PASS    |
| 2600               | V        | 3                       | ⊠A □B                    | PASS    |
| 3500               | Н        | 3                       | ⊠A □B                    | PASS    |
| 3500               | V        | 3                       | ⊠A □B                    | PASS    |
| 5000               | Н        | 3                       | ⊠A □B                    | PASS    |
| 5000               | V        | 3                       | ⊠A □B                    | PASS    |

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

# 4.8. Electrical Fast Transient/Burst (EFT)

## 4.7.1 Test Specification

|                             | EN 61000-4-4              |                                             |                           |                       |  |  |  |  |
|-----------------------------|---------------------------|---------------------------------------------|---------------------------|-----------------------|--|--|--|--|
| Item                        | Environmental Phenomena   | Units                                       | Test Specification        | Performance Criterion |  |  |  |  |
| I/O a                       | and communication ports   |                                             |                           |                       |  |  |  |  |
| Fa                          | st Transients Common Mode | kV (Peak)<br>Tr/Th ns<br>Rep. Frequency kHz | <u>+</u> 0.5<br>5/50<br>5 | В                     |  |  |  |  |
| Inpu                        | t DC Power Ports          |                                             |                           |                       |  |  |  |  |
| Fast Transients Common Mode |                           | kV (Peak)<br>Tr/Th ns<br>Rep. Frequency kHz | <u>+</u> 0.5<br>5/50<br>5 | В                     |  |  |  |  |
| Inpu                        | Input AC Power Ports      |                                             |                           |                       |  |  |  |  |
| Fast Transients Common Mode |                           | kV (Peak)<br>Tr/Th ns<br>Rep. Frequency kHz | <u>+</u> 1<br>5/50<br>5   | В                     |  |  |  |  |

# 4.7.2 Test Configuration



# 4.7.3 Test Procedure

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- c) The duration time of each test sequential was 1 minute.
- d) The transient/burst waveform was in accordance with EN 61000-4-4, 5/50ns.

## 4.7.4 Test Results

| Test Mode: | Mode 1   |                    |                         |                  |                          |         |
|------------|----------|--------------------|-------------------------|------------------|--------------------------|---------|
| Test Point | Polarity | Test Level<br>(kV) | Inject Time<br>(Second) | Inject<br>Method | Performance<br>Criterion | Verdict |
| L          | ±        | 1                  | 60                      | Direct           | ⊠A ⊟B                    | PASS    |
| N          | ±        | 1                  | 60                      | Direct           | ⊠A □B                    | PASS    |
| L-N        | ±        | 1                  | 60                      | Direct           | ⊠A □B                    | PASS    |

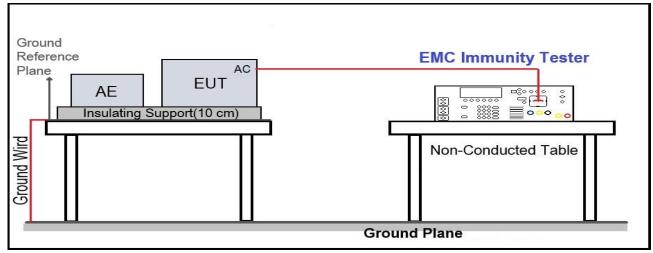
Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

## 4.9. Surge


## 4.8.1 Test Specification

|              | EN 61000-4-5                |                      |                              |                       |  |  |  |  |
|--------------|-----------------------------|----------------------|------------------------------|-----------------------|--|--|--|--|
| Item         | Environmental<br>Phenomena  | Units                | Test Specification           | Performance Criterion |  |  |  |  |
| Sign         | al Ports and Telecommunica  | ation Ports          |                              |                       |  |  |  |  |
| Surg<br>Line | jes<br>to Ground            | Tr/Th us<br>kV       | 10/700 (5/320)<br>± 1 (Note) | В                     |  |  |  |  |
| Inpu         | t DC Power Ports            |                      |                              |                       |  |  |  |  |
| Surg<br>Line | jes<br>to Ground            | Tr/Th us<br>kV       | 1.2/50 (8/20)<br>± 0.5       | В                     |  |  |  |  |
| Inpu         | Input AC Power Ports        |                      |                              |                       |  |  |  |  |
|              | jes<br>to Line<br>to Ground | Tr/Th us<br>kV<br>kV | 1.2/50 (8/20)<br>± 1<br>± 2  | В                     |  |  |  |  |

Note: Where the coupling network for the 10/700  $\mu s$  waveform affects the functioning of high speed data ports,

the test shall be carried out using a 1,2/50 (8/20)  $\mu s$  waveform and appropriate coupling

# 4.8.2 Test Configuration



## 4.8.3 Test Procedure

a) For EUT power supply:

The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

## b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT:

The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

### 4.8.4 Test Results

| Test Mode:     | Mode 1        |                 |                              |                  |                          |         |
|----------------|---------------|-----------------|------------------------------|------------------|--------------------------|---------|
| Angle:         | 0, 90, 180, 2 | 270             |                              |                  |                          |         |
| Inject<br>Line | Polarity      | Voltage<br>(kV) | Time<br>Interval<br>(Second) | Inject<br>Method | Performance<br>Criterion | Verdict |
| L-N            | ±             | 1               | 60                           | Direct           | ⊠A □B                    | Pass    |

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

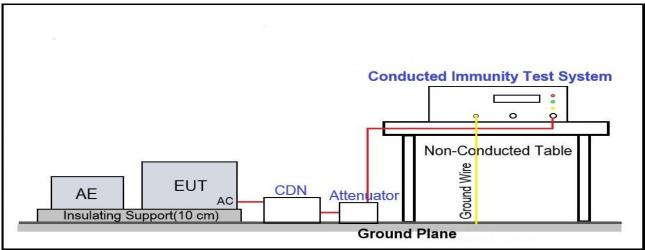
Criterion C: Loss/Error of function

# 4.10. Conducted Susceptibility (CS)

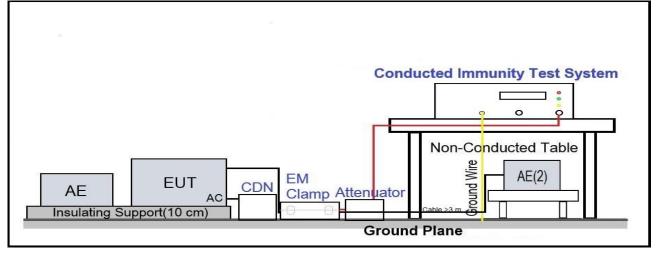
# 4.9.1 Test Specification

| EN 61000-4-6                               |                           |                    |          |          |                          |  |  |  |
|--------------------------------------------|---------------------------|--------------------|----------|----------|--------------------------|--|--|--|
| Environmental Phenomena                    | Units                     | Test Specification |          | tion     | Performance<br>Criterion |  |  |  |
| Signal Ports and Telecommunication Ports   |                           |                    |          |          |                          |  |  |  |
| Dedia Francescu                            | MHz                       | 0.15 to10          | 10 to 30 | 30 to 80 |                          |  |  |  |
| Radio-Frequency<br>Continuous<br>Conducted | V (rms, Un-<br>modulated) | 3                  | 3 to 1   | 1        | А                        |  |  |  |
| Conducted                                  | % AM (1 kHz)              | 80                 |          |          |                          |  |  |  |
| Input DC Power Ports                       |                           |                    |          |          |                          |  |  |  |
| Dadia Fraguenau                            | MHz                       | 0.15 to10          | 10 to 30 | 30 to 80 |                          |  |  |  |
| Radio-Frequency<br>Continuous<br>Conducted | V (rms, Un-<br>modulated) | 3                  | 3 to 1   | 1        | А                        |  |  |  |
| Conducted                                  | % AM (1 kHz)              | 80                 |          |          |                          |  |  |  |
| Input AC Power Ports                       | Input AC Power Ports      |                    |          |          |                          |  |  |  |
| Radio-Frequency<br>Continuous<br>Conducted | MHz                       | 0.15 to10          | 10 to 30 | 30 to 80 |                          |  |  |  |
|                                            | V (rms, Un-<br>modulated) | 3                  | 3 to 1   | 1        | A                        |  |  |  |
|                                            | % AM (1 kHz)              | 80                 |          |          |                          |  |  |  |

EUT tested in accordance with the specifications given by the standard of EN 61000-4-6.


Step

Step time : 3 Second


# 4.9.2 Test Configuration

: 1%

#### **CDN Method**



#### **EM Clamp Method**



#### 4.9.3 Test Procedure

The EUT shall be tested within its intended operating and climatic conditions.

The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was  $1.5 \times 10^{-3}$  decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts was made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

| Test Mode:              | Mode 1                   |             |               |                          |         |
|-------------------------|--------------------------|-------------|---------------|--------------------------|---------|
| Frequency<br>Band (MHz) | Field Strength<br>(Vrms) | Inject Port | Inject Method | Performance<br>Criterion | Verdict |
| 0.15 ~ 10               | 3                        |             |               | ⊠A ⊟B                    | PASS    |
| 10 ~ 30                 | 3 to 1                   | AC Mains    | CDN-M3        | ⊠A ⊟B                    | PASS    |
| 30 ~ 80                 | 1                        |             |               | ⊠A □B                    | PASS    |

## 4.9.4 Test Results

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

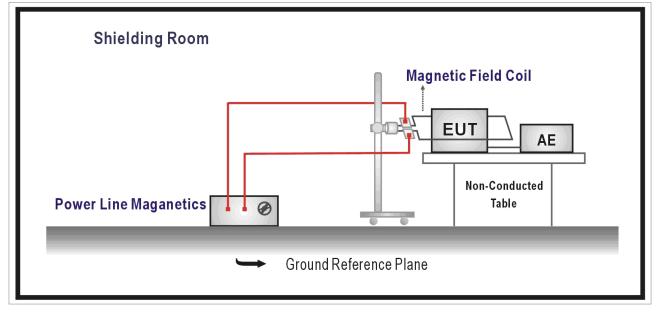
Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test

Criterion C: Loss/Error of function

### 4.11. Power Frequency Magnetic Field (PMF)

#### 4.10.1 Test Specification


| EN 61000-4-8   |                                   |                    |                    |                          |  |  |
|----------------|-----------------------------------|--------------------|--------------------|--------------------------|--|--|
| ltem           | Environmental<br>Phenomena        | Units              | Test Specification | Performance<br>Criterion |  |  |
| Enclosure Port |                                   |                    |                    |                          |  |  |
|                | Power-Frequency<br>Magnetic Field | Hz<br>A/m (r.m.s.) | 50<br>1            | А                        |  |  |

EUT tested in accordance with the specifications given by the standard of EN 61000-4-8.

Orientation : X, Y, Z

Test time : 180 Second

# 4.10.2 Test Configuration



#### 4.10.3 Test Procedure

- a). The equipment was configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b). The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c). The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d). The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.
- e). The EUT is tested in three antenna appositions (Front, top, and side) for 1 minutes each.

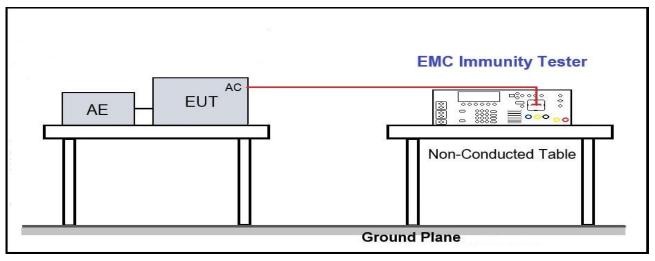
### 4.10.4 Test Results

| Test Mode: Mode 1 |                   |                            |                 |                 |                |         |  |
|-------------------|-------------------|----------------------------|-----------------|-----------------|----------------|---------|--|
| Polarization      | Frequency<br>(Hz) | Magnetic Strength<br>(A/m) | Duration<br>(s) | Perfor<br>Crite | mance<br>erion | Verdict |  |
| X Orientation     | 50                | 1                          | 60              | ΜA              | □В             | PASS    |  |
| Y Orientation     | 50                | 1                          | 60              | A               | В              | PASS    |  |
| Z Orientation     | 50                | 1                          | 60              | A               | □В             | PASS    |  |

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.

Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test


Criterion C: Loss/Error of function

# 4.12. Voltage Dips and Interruptions

### 4.11.1 Test Specification

| EN 61000-4-11           |       |                    |                       |  |  |  |  |
|-------------------------|-------|--------------------|-----------------------|--|--|--|--|
| Environmental Phenomena | Units | Test Specification | Performance Criterion |  |  |  |  |
| Input AC Power Ports    |       |                    |                       |  |  |  |  |
|                         | >95   | % Reduction        | В                     |  |  |  |  |
| Voltage Dips            | 0.5   | Period             | D                     |  |  |  |  |
| vollage Dips            | 30    | % Reduction        | С                     |  |  |  |  |
|                         | 25    | Period             | C                     |  |  |  |  |
| Voltage Interruptions   | >95   | % Reduction        | С                     |  |  |  |  |
|                         | 250   | Period             | C                     |  |  |  |  |

# 4.11.2 Test Configuration



## 4.11.3 Test Procedure

The Section of EN 61000-4 defines the immunity test methods and range of preferred test levels for electrical and electronic equipment connected to low-voltage power supply networks for voltage dips. Short interruptions and voltage variations. The standard applies to electrical and electronic equipment having a rated input current not exceeding 16A per phase. It does not apply to electrical and electronic equipment for connection to D.C networks or 400Hz A.C networks. Test for these networks will be covered by future EN standard. A performance criterion is classified as A, B, C, the recommendation is criterion A or B.

The test shall be performed with the EUT connected to the test generator with the shortest power supply cable as specified by EUT manufacturer. If no cable length is specified, it shall be the shortest possible length suitable to the application of the EUT.

The test set-up for the two types of phenomena described in this standard are:

- Voltage dips and short interruptions;

- Voltage variations with gradual transition between the rated voltage and the changed voltage (Option)

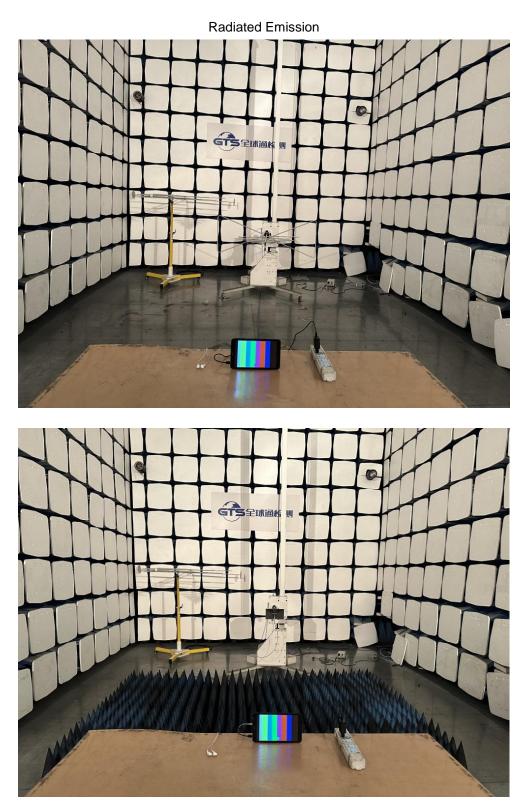
Both tests may be implemented with this set-up. Test on the three-phase EUT are accomplished by using three set of equipment mutually synchronized.

The EUT shall be tested for each selected combination of test level and duration with a sequence of three Dip / interruption with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested.

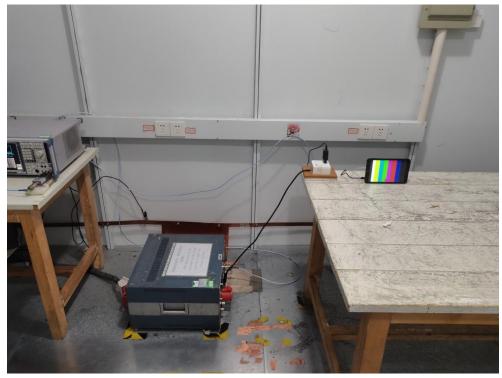
### 4.11.4 Test Results

| Test Mode:            | Mode 1                             |                            |                          |         |  |  |  |
|-----------------------|------------------------------------|----------------------------|--------------------------|---------|--|--|--|
| Angle: 0              | 0, 45, 90, 135, 180, 225, 270, 315 |                            |                          |         |  |  |  |
| Test Voltage<br>(Vac) | Voltage Reduction<br>(%)           | Test Duration<br>(Periods) | Performance<br>Criterion | Verdict |  |  |  |
|                       | >95                                | 0.5                        | A B C                    | Note 1  |  |  |  |
| 230                   | 30                                 | 25                         | A B C                    | Note 1  |  |  |  |
|                       | >95                                | 250                        | □A □B ⊠C                 | Note 2  |  |  |  |
|                       | >95                                | 0.5                        | A B C                    | Note 1  |  |  |  |
| 100                   | 30                                 | 25                         | A B C                    | Note 1  |  |  |  |
|                       | >95                                | 250                        | □A □B ⊠C                 | Note 2  |  |  |  |

Note 1: The testing performed is from lowest level up to the highest level as required by standard, but only highest level is shown on the report.


Criterion A: Operate as intended during and after the test

Criterion B: Operate as intended after the test


Criterion C: Loss/Error of function

Note2: The power is temporary off and can be reset by the operator.

# 5. TEST SETUP PHOTOS OF THE EUT



# Conducted Emission( AC Mains)



Harmonic Current/ Voltage Fluctuation and Flicker



#### Electrostatic Discharge



RF Electromagnetic Field



#### RF Common Mode 0,15 MHz to 80 MHz



Fast Transients Common Mode & Surge & DIPS



# 6. PHOTOS OF THE EUT



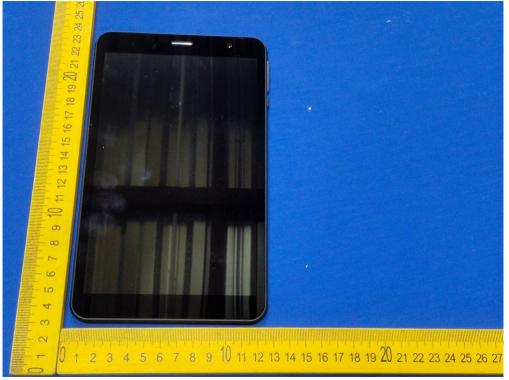

Fig. 1



Fig. 2







8.8





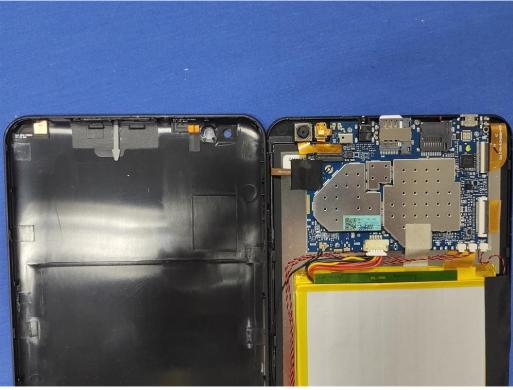
Fig. 6

50 60

\$

20 30




60 80 20 60 20 40 30 20 10100 90 80 20 60 20 40 30 50 40

To avoid





Fig. 10



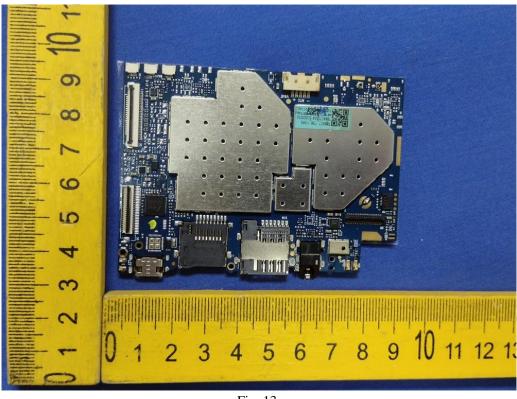




Fig. 12



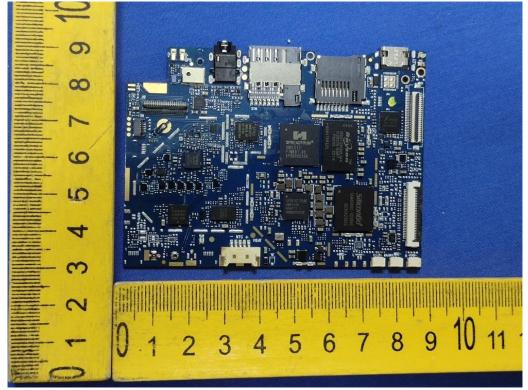
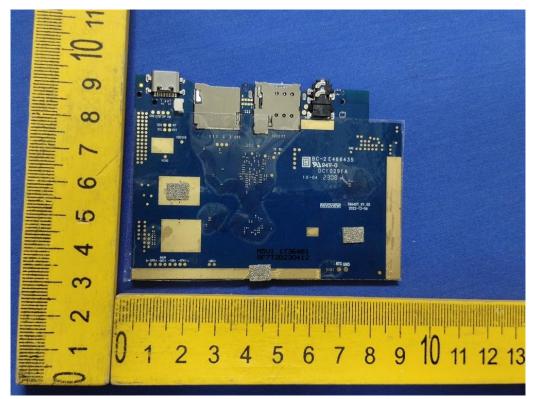




Fig. 14



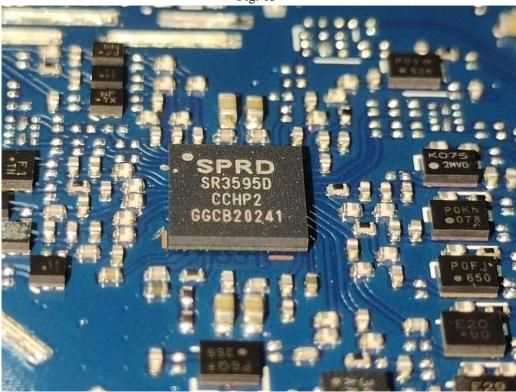
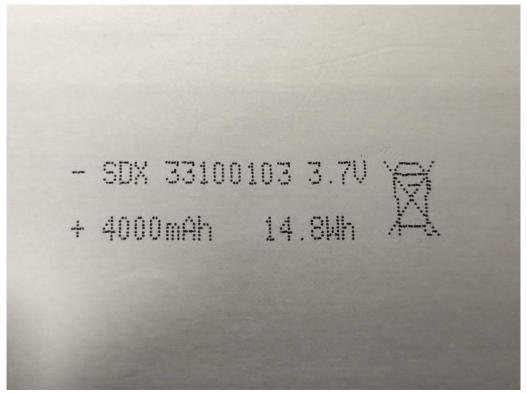




Fig. 16





Fig. 18



.....End of Report.....